Robert M Pettit, Skylar Deckoff-Jones, Angela Donis, Ana Elias, Jayson Briscoe, Gerald Leake, Daniel Coleman, Michael Fanto, Ananthesh Sundaresh, Shobhit Gupta, Manish Kumar Singh, Sean E Sullivan
{"title":"Monolithically Integrated C-Band Quantum Emitters on Foundry Silicon Photonics.","authors":"Robert M Pettit, Skylar Deckoff-Jones, Angela Donis, Ana Elias, Jayson Briscoe, Gerald Leake, Daniel Coleman, Michael Fanto, Ananthesh Sundaresh, Shobhit Gupta, Manish Kumar Singh, Sean E Sullivan","doi":"10.1021/acs.nanolett.5c01896","DOIUrl":null,"url":null,"abstract":"<p><p>Solid-state spin-based quantum systems have emerged as popular platforms for quantum networking applications due to their optical interfaces, their long-lived quantum memories, and their natural compatibility with semiconductor manufacturing. Photonic crystal cavities are often used to enhance radiative emission; however, fabrication of the necessary subwavelength cavities is typically limited to small batch electron beam lithography. In this work, we demonstrate high quality factor, small mode volume nanobeam cavities fabricated on a scalable silicon photonic foundry platform. The foundry fabricated cavities are then interfaced with single erbium ions through backend deposition of TiO<sub>2</sub> thin films lightly doped with erbium. Single ion lifetime measurements indicate Purcell enhancement up to about 500, thereby demonstrating a route toward manufacturable deterministic single photon sources in the telecom C-band.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01896","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Solid-state spin-based quantum systems have emerged as popular platforms for quantum networking applications due to their optical interfaces, their long-lived quantum memories, and their natural compatibility with semiconductor manufacturing. Photonic crystal cavities are often used to enhance radiative emission; however, fabrication of the necessary subwavelength cavities is typically limited to small batch electron beam lithography. In this work, we demonstrate high quality factor, small mode volume nanobeam cavities fabricated on a scalable silicon photonic foundry platform. The foundry fabricated cavities are then interfaced with single erbium ions through backend deposition of TiO2 thin films lightly doped with erbium. Single ion lifetime measurements indicate Purcell enhancement up to about 500, thereby demonstrating a route toward manufacturable deterministic single photon sources in the telecom C-band.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.