Interstitially Bridged van der Waals Interface Enabling Stacking-Fault-Free, Layer-by-Layer Epitaxy

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-29 DOI:10.1021/acsnano.5c07577
GunWoo Yoo, TaeJoon Mo, Yong-Sung Kim*, Chang-Won Choi, Gunho Moon, Sumin Lee, Chan-Cuk Hwang, Woo-Ju Lee, Min-Yeong Choi, Jongyun Choi, Si-Young Choi*, Moon-Ho Jo* and Cheol-Joo Kim*, 
{"title":"Interstitially Bridged van der Waals Interface Enabling Stacking-Fault-Free, Layer-by-Layer Epitaxy","authors":"GunWoo Yoo,&nbsp;TaeJoon Mo,&nbsp;Yong-Sung Kim*,&nbsp;Chang-Won Choi,&nbsp;Gunho Moon,&nbsp;Sumin Lee,&nbsp;Chan-Cuk Hwang,&nbsp;Woo-Ju Lee,&nbsp;Min-Yeong Choi,&nbsp;Jongyun Choi,&nbsp;Si-Young Choi*,&nbsp;Moon-Ho Jo* and Cheol-Joo Kim*,&nbsp;","doi":"10.1021/acsnano.5c07577","DOIUrl":null,"url":null,"abstract":"<p >van der Waals (vdW) crystals are prone to twisting, sliding, and buckling due to inherently weak interlayer interactions. While thickness-controlled vdW structures have attracted considerable attention as ultrathin semiconducting channels, the deterministic synthesis of stacking-fault-free multilayers remains a persistent challenge. Here, we report the epitaxial growth of single-crystalline hexagonal bilayer MoS<sub>2</sub>, enabled by the incorporation of Mo interstitials between layers during layer-by-layer deposition. The resulting bilayers exhibit exceptional structural robustness, maintaining their crystallinity and suppressing both rotational and translational interlayer misalignments even after transfer processes. Atomic-resolution analysis reveals that the Mo interstitials are located at a single sublattice site within the hexagonal lattice, where they form tetrahedral bonds with sulfur atoms from both MoS<sub>2</sub> layers, effectively anchoring the interlayer registry. Density functional theory calculations further indicate that these Mo atoms act as nucleation centers, promoting the selective formation of the hexagonal bilayer phase. This approach offers a robust strategy for the deterministic growth of multilayer vdW crystals with precisely controlled stacking order and enhanced interlayer coupling.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 31","pages":"28491–28501"},"PeriodicalIF":16.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c07577","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

van der Waals (vdW) crystals are prone to twisting, sliding, and buckling due to inherently weak interlayer interactions. While thickness-controlled vdW structures have attracted considerable attention as ultrathin semiconducting channels, the deterministic synthesis of stacking-fault-free multilayers remains a persistent challenge. Here, we report the epitaxial growth of single-crystalline hexagonal bilayer MoS2, enabled by the incorporation of Mo interstitials between layers during layer-by-layer deposition. The resulting bilayers exhibit exceptional structural robustness, maintaining their crystallinity and suppressing both rotational and translational interlayer misalignments even after transfer processes. Atomic-resolution analysis reveals that the Mo interstitials are located at a single sublattice site within the hexagonal lattice, where they form tetrahedral bonds with sulfur atoms from both MoS2 layers, effectively anchoring the interlayer registry. Density functional theory calculations further indicate that these Mo atoms act as nucleation centers, promoting the selective formation of the hexagonal bilayer phase. This approach offers a robust strategy for the deterministic growth of multilayer vdW crystals with precisely controlled stacking order and enhanced interlayer coupling.

Abstract Image

层间桥接范德华接口,实现堆叠无故障,逐层外延。
范德华(vdW)晶体由于固有的弱层间相互作用而容易扭曲、滑动和屈曲。虽然厚度控制的vdW结构作为超薄半导体通道已经引起了相当大的关注,但叠层无故障多层结构的确定性合成仍然是一个持续的挑战。在这里,我们报道了单晶六方双层MoS2的外延生长,这是由于在逐层沉积过程中在层之间加入Mo间隙而实现的。由此产生的双分子层表现出特殊的结构稳健性,即使在转移过程后也能保持其结晶度并抑制层间的旋转和平移错位。原子分辨率分析表明,Mo间隙位于六边形晶格内的单个亚晶格位置,在那里它们与来自两个MoS2层的硫原子形成四面体键,有效地锚定了层间注册。密度泛函理论计算进一步表明,这些Mo原子作为成核中心,促进了六方双层相的选择性形成。该方法为多层vdW晶体的确定性生长提供了一种可靠的策略,具有精确控制的堆叠顺序和增强的层间耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信