{"title":"Interstitially Bridged van der Waals Interface Enabling Stacking-Fault-Free, Layer-by-Layer Epitaxy","authors":"GunWoo Yoo, TaeJoon Mo, Yong-Sung Kim*, Chang-Won Choi, Gunho Moon, Sumin Lee, Chan-Cuk Hwang, Woo-Ju Lee, Min-Yeong Choi, Jongyun Choi, Si-Young Choi*, Moon-Ho Jo* and Cheol-Joo Kim*, ","doi":"10.1021/acsnano.5c07577","DOIUrl":null,"url":null,"abstract":"<p >van der Waals (vdW) crystals are prone to twisting, sliding, and buckling due to inherently weak interlayer interactions. While thickness-controlled vdW structures have attracted considerable attention as ultrathin semiconducting channels, the deterministic synthesis of stacking-fault-free multilayers remains a persistent challenge. Here, we report the epitaxial growth of single-crystalline hexagonal bilayer MoS<sub>2</sub>, enabled by the incorporation of Mo interstitials between layers during layer-by-layer deposition. The resulting bilayers exhibit exceptional structural robustness, maintaining their crystallinity and suppressing both rotational and translational interlayer misalignments even after transfer processes. Atomic-resolution analysis reveals that the Mo interstitials are located at a single sublattice site within the hexagonal lattice, where they form tetrahedral bonds with sulfur atoms from both MoS<sub>2</sub> layers, effectively anchoring the interlayer registry. Density functional theory calculations further indicate that these Mo atoms act as nucleation centers, promoting the selective formation of the hexagonal bilayer phase. This approach offers a robust strategy for the deterministic growth of multilayer vdW crystals with precisely controlled stacking order and enhanced interlayer coupling.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 31","pages":"28491–28501"},"PeriodicalIF":16.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c07577","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
van der Waals (vdW) crystals are prone to twisting, sliding, and buckling due to inherently weak interlayer interactions. While thickness-controlled vdW structures have attracted considerable attention as ultrathin semiconducting channels, the deterministic synthesis of stacking-fault-free multilayers remains a persistent challenge. Here, we report the epitaxial growth of single-crystalline hexagonal bilayer MoS2, enabled by the incorporation of Mo interstitials between layers during layer-by-layer deposition. The resulting bilayers exhibit exceptional structural robustness, maintaining their crystallinity and suppressing both rotational and translational interlayer misalignments even after transfer processes. Atomic-resolution analysis reveals that the Mo interstitials are located at a single sublattice site within the hexagonal lattice, where they form tetrahedral bonds with sulfur atoms from both MoS2 layers, effectively anchoring the interlayer registry. Density functional theory calculations further indicate that these Mo atoms act as nucleation centers, promoting the selective formation of the hexagonal bilayer phase. This approach offers a robust strategy for the deterministic growth of multilayer vdW crystals with precisely controlled stacking order and enhanced interlayer coupling.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.