Suman Mandal, Minh Dang Nguyen, Nikhil Ranjan Jana* and T. Randall Lee*,
{"title":"Nanoparticles with Ampholytic Surfaces for Binding and Disintegration of Amyloid Fibrils","authors":"Suman Mandal, Minh Dang Nguyen, Nikhil Ranjan Jana* and T. Randall Lee*, ","doi":"10.1021/acscentsci.5c00519","DOIUrl":null,"url":null,"abstract":"<p >Amyloid fibrils and associated protein aggregates are key contributors to a range of neurodegenerative diseases. Recent studies suggest that nanoparticles with tailored surface chemistries can effectively bind to and disrupt these fibrils. Here, we investigate the role of nanoparticle surface charge in mediating interactions with amyloid fibrils and promoting their disintegration. We synthesized seven types of charged iron oxide nanoparticles (cationic, anionic, and ampholytic) in colloidal form with hydrodynamic diameters ranging from 15 to 40 nm. Interaction studies with mature lysozyme fibrils revealed that ampholytic nanoparticles exhibited the highest binding affinity among the tested surface types. This enhanced affinity is attributed to reduced nonspecific interactions and favorable electrostatic compatibility. Ampholytic nanoparticles disrupted mature amyloid fibrils approximately 2.5 times more effectively than other surface-charged nanoparticles, leading to smaller fibril fragments via mechanical agitation. We further show that agitation-induced mechanical force, along with piezocatalytically generated reactive oxygen species (ROS), contributes to fibril degradation. These findings highlight the critical role of ampholytic surface charge in promoting fibril disintegration and suggest that such nanoparticles could be leveraged in therapeutic strategies for neurodegenerative diseases involving amyloid aggregation.</p><p >Ampholytic nanoparticles bind and disintegrate amyloid fibrils efficiently via electrostatic interactions and ROS generation under agitation; cationic and anionic types are less effective.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 7","pages":"1218–1229"},"PeriodicalIF":10.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12291134/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.5c00519","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Amyloid fibrils and associated protein aggregates are key contributors to a range of neurodegenerative diseases. Recent studies suggest that nanoparticles with tailored surface chemistries can effectively bind to and disrupt these fibrils. Here, we investigate the role of nanoparticle surface charge in mediating interactions with amyloid fibrils and promoting their disintegration. We synthesized seven types of charged iron oxide nanoparticles (cationic, anionic, and ampholytic) in colloidal form with hydrodynamic diameters ranging from 15 to 40 nm. Interaction studies with mature lysozyme fibrils revealed that ampholytic nanoparticles exhibited the highest binding affinity among the tested surface types. This enhanced affinity is attributed to reduced nonspecific interactions and favorable electrostatic compatibility. Ampholytic nanoparticles disrupted mature amyloid fibrils approximately 2.5 times more effectively than other surface-charged nanoparticles, leading to smaller fibril fragments via mechanical agitation. We further show that agitation-induced mechanical force, along with piezocatalytically generated reactive oxygen species (ROS), contributes to fibril degradation. These findings highlight the critical role of ampholytic surface charge in promoting fibril disintegration and suggest that such nanoparticles could be leveraged in therapeutic strategies for neurodegenerative diseases involving amyloid aggregation.
Ampholytic nanoparticles bind and disintegrate amyloid fibrils efficiently via electrostatic interactions and ROS generation under agitation; cationic and anionic types are less effective.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.