Robin Schoemaker, Chunning Sun, Davide Chiarugi, Theodore Tyrikos-Ergas* and Peter H. Seeberger*,
{"title":"Chemistries Moonshot: An Entirely Recyclable Car","authors":"Robin Schoemaker, Chunning Sun, Davide Chiarugi, Theodore Tyrikos-Ergas* and Peter H. Seeberger*, ","doi":"10.1021/acscentsci.5c00589","DOIUrl":null,"url":null,"abstract":"<p >Automobiles depend on fossil resources – both to create the device and to power it. The automotive industry has decreased this dependency on fossil fuels by developing more fuel-efficient combustion engines, lightweight designs, and biofuels. The rise of battery electric vehicles (BEVs) offers the chance to reduce the fossil footprint by avoiding fuel combustion and exhaust emission. Disruptive approaches toward a truly sustainable car are far from being market-ready. To reach a completely sustainable car, the automotive industry must address the carbon footprint of material production, which is based in the chemical sector. The automotive and chemical industries have to adopt closed-loop thinking, utilize renewable resources for biodegradables, as well as develop novel materials and designs for efficient recycling. Disruptive approaches can arise from predictive models that can accelerate chemical research and enable the discovery of sustainable materials with desirable recycling properties. Integrating generative artificial intelligence (AI) with high-throughput experimental validation will shorten material development cycles and advance the transition to more sustainable products. Moving toward a fully recyclable car is aligning research and development efforts from the chemical sector to the automotive industry and beyond, presenting a giant leap toward a circular economy.</p><p >An outlook on sustainability in the auto industry, focusing on data-driven chemistry to reduce fossil dependency and enable a transition toward a circular economy.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 7","pages":"1052–1061"},"PeriodicalIF":10.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12291114/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.5c00589","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Automobiles depend on fossil resources – both to create the device and to power it. The automotive industry has decreased this dependency on fossil fuels by developing more fuel-efficient combustion engines, lightweight designs, and biofuels. The rise of battery electric vehicles (BEVs) offers the chance to reduce the fossil footprint by avoiding fuel combustion and exhaust emission. Disruptive approaches toward a truly sustainable car are far from being market-ready. To reach a completely sustainable car, the automotive industry must address the carbon footprint of material production, which is based in the chemical sector. The automotive and chemical industries have to adopt closed-loop thinking, utilize renewable resources for biodegradables, as well as develop novel materials and designs for efficient recycling. Disruptive approaches can arise from predictive models that can accelerate chemical research and enable the discovery of sustainable materials with desirable recycling properties. Integrating generative artificial intelligence (AI) with high-throughput experimental validation will shorten material development cycles and advance the transition to more sustainable products. Moving toward a fully recyclable car is aligning research and development efforts from the chemical sector to the automotive industry and beyond, presenting a giant leap toward a circular economy.
An outlook on sustainability in the auto industry, focusing on data-driven chemistry to reduce fossil dependency and enable a transition toward a circular economy.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.