{"title":"Performance Dependence of Optical-Loop-Based Coherent Ising Machine on Operating Conditions","authors":"Kyo Inoue;Shogo Kitahara;Koji Igarashi","doi":"10.1109/JQE.2025.3583102","DOIUrl":null,"url":null,"abstract":"Coherent Ising machines (CIMs) are optical computers designed to solve combinatorial optimization problems based on the Ising model. Among several variants, the optical-loop-based CIM, which utilizes optical pulses with binary phases circulating in a loop equipped with a pulse-pumped phase-sensitive amplifier (PSA) and a measurement feedback circuit, has experimentally demonstrated high performance in terms of the number of pulses and connectivity. This study numerically investigates the dependence of its calculation performance on operating conditions such as the noise level, coupling strength between pulses, and PSA pump increment rate. The CIM solving Max-Cut problems is simulated using a difference equation based on a traveling-wave model under various operating conditions. The results indicate that noise is not a critical factor, there is an optimal condition for the coupling strength, depending on the graph structure, and slower pump-increment rate leads to higher scores. Under optimal conditions, the simulation produces better calculation results than those previously reported in an experimental study.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 4","pages":"1-6"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11050403/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Coherent Ising machines (CIMs) are optical computers designed to solve combinatorial optimization problems based on the Ising model. Among several variants, the optical-loop-based CIM, which utilizes optical pulses with binary phases circulating in a loop equipped with a pulse-pumped phase-sensitive amplifier (PSA) and a measurement feedback circuit, has experimentally demonstrated high performance in terms of the number of pulses and connectivity. This study numerically investigates the dependence of its calculation performance on operating conditions such as the noise level, coupling strength between pulses, and PSA pump increment rate. The CIM solving Max-Cut problems is simulated using a difference equation based on a traveling-wave model under various operating conditions. The results indicate that noise is not a critical factor, there is an optimal condition for the coupling strength, depending on the graph structure, and slower pump-increment rate leads to higher scores. Under optimal conditions, the simulation produces better calculation results than those previously reported in an experimental study.
期刊介绍:
The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.