{"title":"Monolithically Integrated Narrow-Linewidth Optical-Negative-Feedback Lasers","authors":"Nobuhide Yokota;Hiroshi Yasaka","doi":"10.1109/JQE.2025.3579731","DOIUrl":null,"url":null,"abstract":"The optical negative-feedback laser monolithically integrated on an InP substrate for obtaining narrow linewidth is investigated. Optical negative feedback (ONF) induced by reflection of light from a Fabry-Perot (FP) resonator reduces linewidth of a distributed Bragg reflector (DBR) laser by 1/14 compared to that of a free-running DBR laser. The measured reflectivity of the fabricated ONF laser is compared to reflectivity simulated with an effective reflectivity model. It is demonstrated that control of the feedback phase is necessary to reduce linewidth by exploiting optical negative feedback. Linewidth is expected to be further reduced by using an FP resonator with a higher quality factor. It is also demonstrated that ONF lasers are compatible with fabrication in the InP foundry platform.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 4","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11036673/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The optical negative-feedback laser monolithically integrated on an InP substrate for obtaining narrow linewidth is investigated. Optical negative feedback (ONF) induced by reflection of light from a Fabry-Perot (FP) resonator reduces linewidth of a distributed Bragg reflector (DBR) laser by 1/14 compared to that of a free-running DBR laser. The measured reflectivity of the fabricated ONF laser is compared to reflectivity simulated with an effective reflectivity model. It is demonstrated that control of the feedback phase is necessary to reduce linewidth by exploiting optical negative feedback. Linewidth is expected to be further reduced by using an FP resonator with a higher quality factor. It is also demonstrated that ONF lasers are compatible with fabrication in the InP foundry platform.
期刊介绍:
The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.