Risk-Sensitive Model Predictive Control for Interaction-Aware Planning–A Sequential Convexification Algorithm

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Renzi Wang;Mathijs Schuurmans;Panagiotis Patrinos
{"title":"Risk-Sensitive Model Predictive Control for Interaction-Aware Planning–A Sequential Convexification Algorithm","authors":"Renzi Wang;Mathijs Schuurmans;Panagiotis Patrinos","doi":"10.1109/LCSYS.2025.3586667","DOIUrl":null,"url":null,"abstract":"This letter considers risk-sensitive model predictive control for stochastic systems with a decision-dependent distribution. This class of systems is commonly found in human-robot interaction scenarios. We derive computationally tractable convex upper bounds to both the objective function, and to frequently used penalty terms for collision avoidance, allowing us to efficiently solve the generally nonconvex optimal control problem as a sequence of convex problems. Simulations of a robot navigating a corridor demonstrate the effectiveness and the computational advantage of the proposed approach.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1916-1921"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11072435/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter considers risk-sensitive model predictive control for stochastic systems with a decision-dependent distribution. This class of systems is commonly found in human-robot interaction scenarios. We derive computationally tractable convex upper bounds to both the objective function, and to frequently used penalty terms for collision avoidance, allowing us to efficiently solve the generally nonconvex optimal control problem as a sequence of convex problems. Simulations of a robot navigating a corridor demonstrate the effectiveness and the computational advantage of the proposed approach.
面向交互感知规划的风险敏感模型预测控制——一种序列凸化算法
本文研究具有决策依赖分布的随机系统的风险敏感模型预测控制。这类系统通常出现在人机交互场景中。我们为目标函数和经常用于避免碰撞的惩罚项导出了计算上易于处理的凸上界,使我们能够有效地将一般非凸最优控制问题作为一系列凸问题来解决。机器人在走廊上的导航仿真验证了该方法的有效性和计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信