Simultaneous Input and State Estimation Under Output Quantization: A Gaussian Mixture Approach

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Rodrigo A. González;Angel L. Cedeño
{"title":"Simultaneous Input and State Estimation Under Output Quantization: A Gaussian Mixture Approach","authors":"Rodrigo A. González;Angel L. Cedeño","doi":"10.1109/LCSYS.2025.3586656","DOIUrl":null,"url":null,"abstract":"Simultaneous Input and State Estimation (SISE) enables the reconstruction of unknown inputs and internal states in dynamical systems, with applications in fault detection, robotics, and control. While various methods exist for linear systems, extensions to systems with output quantization are scarce, and no formal connections to limit Kalman filters are known in this context. This letter addresses these gaps by proposing a novel SISE algorithm for linear systems with quantized output measurements. The proposed algorithm introduces a Gaussian mixture model formulation of the observation model, which leads to closed-form recursive equations in the form of a Gaussian sum filter. In the absence of input prior knowledge, the recursions are shown to converge to a limit-case SISE algorithm, implementable as a bank of linear SISE filters running in parallel. A simulation example is presented to illustrate the effectiveness of the proposed approach.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1946-1951"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11072460/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Simultaneous Input and State Estimation (SISE) enables the reconstruction of unknown inputs and internal states in dynamical systems, with applications in fault detection, robotics, and control. While various methods exist for linear systems, extensions to systems with output quantization are scarce, and no formal connections to limit Kalman filters are known in this context. This letter addresses these gaps by proposing a novel SISE algorithm for linear systems with quantized output measurements. The proposed algorithm introduces a Gaussian mixture model formulation of the observation model, which leads to closed-form recursive equations in the form of a Gaussian sum filter. In the absence of input prior knowledge, the recursions are shown to converge to a limit-case SISE algorithm, implementable as a bank of linear SISE filters running in parallel. A simulation example is presented to illustrate the effectiveness of the proposed approach.
输出量化下的同步输入和状态估计:一种高斯混合方法
同步输入和状态估计(SISE)能够重建动态系统中的未知输入和内部状态,在故障检测,机器人和控制中应用。虽然线性系统有各种各样的方法,但对具有输出量化的系统的扩展很少,并且在这种情况下没有已知的限制卡尔曼滤波器的正式联系。这封信通过提出一种具有量化输出测量的线性系统的新颖SISE算法来解决这些差距。该算法在观测模型中引入高斯混合模型,得到高斯和滤波器形式的闭型递推方程。在没有输入先验知识的情况下,递归收敛于极限情况下的SISE算法,可作为并行运行的一组线性SISE滤波器实现。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信