P. Procel , Y. Zhou , M. Verkou , M. Leonardi , D. Di Girolamo , G. Giuliano , O. Dupré , Y. Blom , M.R. Vogt , R. Santbergen , F. Rametta , M. Foti , C. Gerardi , M. Zeman , O. Isabella
{"title":"PV multiscale modelling of perovskite / silicon two-terminal devices: from accurate cell performance simulation to energy yield prediction","authors":"P. Procel , Y. Zhou , M. Verkou , M. Leonardi , D. Di Girolamo , G. Giuliano , O. Dupré , Y. Blom , M.R. Vogt , R. Santbergen , F. Rametta , M. Foti , C. Gerardi , M. Zeman , O. Isabella","doi":"10.1016/j.solmat.2025.113864","DOIUrl":null,"url":null,"abstract":"<div><div>Recent conversion efficiency breakthroughs in double-junction (tandem) perovskite/crystalline silicon solar cells demand advanced opto-thermo-electrical simulations, that are critical for translating laboratory results into realistic photovoltaic module and system performance. A holistic framework is here developed and presented, combining cell-level simulations, spectral analysis, PV module and PV system modelling. After validating the deployed physics models against measured cells and modules, hourly spectral irradiances for Delft, the Netherlands, and Catania, Italy, are generated and clustered into representative “blue-rich” and “red-rich” spectra. The effects of spectral variations on the current-matching and energy yield of tandem modules are quantified. Realistic module architectures are simulated, integrating dynamic temperature and spectrum data. Temperature coefficients are derived as a function of both irradiance and module temperature, significantly improving upon traditional indoor-derived values. Results show that standard indoor-derived coefficients under-/overestimate values in realistic conditions, highlighting the ultimate need for location-specific power matrixes. This study offers a robust pathway to predict tandem module energy yields across seasons and climates, supporting optimized design choices for industrial production and future PV installations.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"293 ","pages":"Article 113864"},"PeriodicalIF":6.3000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825004659","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent conversion efficiency breakthroughs in double-junction (tandem) perovskite/crystalline silicon solar cells demand advanced opto-thermo-electrical simulations, that are critical for translating laboratory results into realistic photovoltaic module and system performance. A holistic framework is here developed and presented, combining cell-level simulations, spectral analysis, PV module and PV system modelling. After validating the deployed physics models against measured cells and modules, hourly spectral irradiances for Delft, the Netherlands, and Catania, Italy, are generated and clustered into representative “blue-rich” and “red-rich” spectra. The effects of spectral variations on the current-matching and energy yield of tandem modules are quantified. Realistic module architectures are simulated, integrating dynamic temperature and spectrum data. Temperature coefficients are derived as a function of both irradiance and module temperature, significantly improving upon traditional indoor-derived values. Results show that standard indoor-derived coefficients under-/overestimate values in realistic conditions, highlighting the ultimate need for location-specific power matrixes. This study offers a robust pathway to predict tandem module energy yields across seasons and climates, supporting optimized design choices for industrial production and future PV installations.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.