PV multiscale modelling of perovskite / silicon two-terminal devices: from accurate cell performance simulation to energy yield prediction

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
P. Procel , Y. Zhou , M. Verkou , M. Leonardi , D. Di Girolamo , G. Giuliano , O. Dupré , Y. Blom , M.R. Vogt , R. Santbergen , F. Rametta , M. Foti , C. Gerardi , M. Zeman , O. Isabella
{"title":"PV multiscale modelling of perovskite / silicon two-terminal devices: from accurate cell performance simulation to energy yield prediction","authors":"P. Procel ,&nbsp;Y. Zhou ,&nbsp;M. Verkou ,&nbsp;M. Leonardi ,&nbsp;D. Di Girolamo ,&nbsp;G. Giuliano ,&nbsp;O. Dupré ,&nbsp;Y. Blom ,&nbsp;M.R. Vogt ,&nbsp;R. Santbergen ,&nbsp;F. Rametta ,&nbsp;M. Foti ,&nbsp;C. Gerardi ,&nbsp;M. Zeman ,&nbsp;O. Isabella","doi":"10.1016/j.solmat.2025.113864","DOIUrl":null,"url":null,"abstract":"<div><div>Recent conversion efficiency breakthroughs in double-junction (tandem) perovskite/crystalline silicon solar cells demand advanced opto-thermo-electrical simulations, that are critical for translating laboratory results into realistic photovoltaic module and system performance. A holistic framework is here developed and presented, combining cell-level simulations, spectral analysis, PV module and PV system modelling. After validating the deployed physics models against measured cells and modules, hourly spectral irradiances for Delft, the Netherlands, and Catania, Italy, are generated and clustered into representative “blue-rich” and “red-rich” spectra. The effects of spectral variations on the current-matching and energy yield of tandem modules are quantified. Realistic module architectures are simulated, integrating dynamic temperature and spectrum data. Temperature coefficients are derived as a function of both irradiance and module temperature, significantly improving upon traditional indoor-derived values. Results show that standard indoor-derived coefficients under-/overestimate values in realistic conditions, highlighting the ultimate need for location-specific power matrixes. This study offers a robust pathway to predict tandem module energy yields across seasons and climates, supporting optimized design choices for industrial production and future PV installations.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"293 ","pages":"Article 113864"},"PeriodicalIF":6.3000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825004659","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent conversion efficiency breakthroughs in double-junction (tandem) perovskite/crystalline silicon solar cells demand advanced opto-thermo-electrical simulations, that are critical for translating laboratory results into realistic photovoltaic module and system performance. A holistic framework is here developed and presented, combining cell-level simulations, spectral analysis, PV module and PV system modelling. After validating the deployed physics models against measured cells and modules, hourly spectral irradiances for Delft, the Netherlands, and Catania, Italy, are generated and clustered into representative “blue-rich” and “red-rich” spectra. The effects of spectral variations on the current-matching and energy yield of tandem modules are quantified. Realistic module architectures are simulated, integrating dynamic temperature and spectrum data. Temperature coefficients are derived as a function of both irradiance and module temperature, significantly improving upon traditional indoor-derived values. Results show that standard indoor-derived coefficients under-/overestimate values in realistic conditions, highlighting the ultimate need for location-specific power matrixes. This study offers a robust pathway to predict tandem module energy yields across seasons and climates, supporting optimized design choices for industrial production and future PV installations.
钙钛矿/硅双端器件的PV多尺度建模:从精确的电池性能模拟到能量产量预测
最近在双结(串联)钙钛矿/晶体硅太阳能电池的转换效率突破需要先进的光热电模拟,这对于将实验室结果转化为现实的光伏组件和系统性能至关重要。本文提出了一个整体框架,结合了电池级模拟、光谱分析、光伏模块和光伏系统建模。在根据测量的细胞和模块验证部署的物理模型后,生成荷兰代尔夫特和意大利卡塔尼亚的每小时光谱辐照度,并将其聚类为具有代表性的“蓝富”和“红富”光谱。量化了光谱变化对串联模块电流匹配和能量产生的影响。模拟了实际的模块结构,集成了动态温度和光谱数据。温度系数推导为辐照度和模块温度的函数,大大改进了传统的室内推导值。结果表明,在现实条件下,标准的室内推导系数低估/高估了值,突出了对特定位置功率矩阵的最终需求。这项研究为预测跨季节和气候的串联模块发电量提供了一个可靠的途径,为工业生产和未来光伏装置的优化设计提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信