Jeeban P. Das , Hong Y. Ma , Dorine DeJong , Conor Prendergast , Alireza Baniasadi , Brian Braumuller , Anna Giarratana , Saeid Khonji , Jacienta Paily , Parnian Shobeiri , Randy Yeh , Laurent Dercle , Kathleen M. Capaccione
{"title":"The evolving role of multimodal imaging, artificial intelligence and radiomics in the radiologic assessment of immune related adverse events","authors":"Jeeban P. Das , Hong Y. Ma , Dorine DeJong , Conor Prendergast , Alireza Baniasadi , Brian Braumuller , Anna Giarratana , Saeid Khonji , Jacienta Paily , Parnian Shobeiri , Randy Yeh , Laurent Dercle , Kathleen M. Capaccione","doi":"10.1016/j.clinimag.2025.110571","DOIUrl":null,"url":null,"abstract":"<div><div>Immunotherapy, in particular checkpoint blockade, has revolutionized the treatment of many advanced cancers. Imaging plays a critical role in assessing both treatment response and the development of immune toxicities. Both conventional imaging and molecular imaging techniques can be used to evaluate multisystemic immune related adverse events (irAEs), including thoracic, abdominal and neurologic irAEs. As artificial intelligence (AI) proliferates in medical imaging, radiologic assessment of irAEs will become more efficient, improving the diagnosis, prognosis, and management of patients affected by immune-related toxicities. This review addresses some of the advancements in medical imaging including the potential future role of radiomics in evaluating irAEs, which may facilitate clinical decision-making and improvements in patient care.</div></div>","PeriodicalId":50680,"journal":{"name":"Clinical Imaging","volume":"125 ","pages":"Article 110571"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0899707125001718","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Immunotherapy, in particular checkpoint blockade, has revolutionized the treatment of many advanced cancers. Imaging plays a critical role in assessing both treatment response and the development of immune toxicities. Both conventional imaging and molecular imaging techniques can be used to evaluate multisystemic immune related adverse events (irAEs), including thoracic, abdominal and neurologic irAEs. As artificial intelligence (AI) proliferates in medical imaging, radiologic assessment of irAEs will become more efficient, improving the diagnosis, prognosis, and management of patients affected by immune-related toxicities. This review addresses some of the advancements in medical imaging including the potential future role of radiomics in evaluating irAEs, which may facilitate clinical decision-making and improvements in patient care.
期刊介绍:
The mission of Clinical Imaging is to publish, in a timely manner, the very best radiology research from the United States and around the world with special attention to the impact of medical imaging on patient care. The journal''s publications cover all imaging modalities, radiology issues related to patients, policy and practice improvements, and clinically-oriented imaging physics and informatics. The journal is a valuable resource for practicing radiologists, radiologists-in-training and other clinicians with an interest in imaging. Papers are carefully peer-reviewed and selected by our experienced subject editors who are leading experts spanning the range of imaging sub-specialties, which include:
-Body Imaging-
Breast Imaging-
Cardiothoracic Imaging-
Imaging Physics and Informatics-
Molecular Imaging and Nuclear Medicine-
Musculoskeletal and Emergency Imaging-
Neuroradiology-
Practice, Policy & Education-
Pediatric Imaging-
Vascular and Interventional Radiology