Koopman-based control using sum-of-squares optimization: Improved stability guarantees and data efficiency

IF 2.6 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Robin Strässer, Julian Berberich, Frank Allgöwer
{"title":"Koopman-based control using sum-of-squares optimization: Improved stability guarantees and data efficiency","authors":"Robin Strässer,&nbsp;Julian Berberich,&nbsp;Frank Allgöwer","doi":"10.1016/j.ejcon.2025.101286","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a novel controller design approach for unknown nonlinear systems using the Koopman operator. In particular, we use the recently proposed stability- and certificate-oriented extended dynamic mode decomposition (SafEDMD) architecture to generate a data-driven bilinear surrogate model with certified error bounds. Then, by accounting for the obtained error bounds in a controller design based on the bilinear system, one can guarantee closed-loop stability for the true nonlinear system. While existing approaches over-approximate the bilinearity of the surrogate model, thus introducing conservatism and providing only local guarantees, we explicitly account for the bilinearity by using sum-of-squares (SOS) optimization in the controller design. More precisely, we parametrize a rational controller stabilizing the error-affected bilinear surrogate model and, consequently, the underlying nonlinear system. The resulting SOS optimization problem provides explicit data-driven controller design conditions for unknown nonlinear systems based on semidefinite programming. Our approach significantly reduces conservatism by establishing a larger region of attraction and improved data efficiency. The proposed method is evaluated using numerical examples, demonstrating its advantages over existing approaches.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"85 ","pages":"Article 101286"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358025001153","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel controller design approach for unknown nonlinear systems using the Koopman operator. In particular, we use the recently proposed stability- and certificate-oriented extended dynamic mode decomposition (SafEDMD) architecture to generate a data-driven bilinear surrogate model with certified error bounds. Then, by accounting for the obtained error bounds in a controller design based on the bilinear system, one can guarantee closed-loop stability for the true nonlinear system. While existing approaches over-approximate the bilinearity of the surrogate model, thus introducing conservatism and providing only local guarantees, we explicitly account for the bilinearity by using sum-of-squares (SOS) optimization in the controller design. More precisely, we parametrize a rational controller stabilizing the error-affected bilinear surrogate model and, consequently, the underlying nonlinear system. The resulting SOS optimization problem provides explicit data-driven controller design conditions for unknown nonlinear systems based on semidefinite programming. Our approach significantly reduces conservatism by establishing a larger region of attraction and improved data efficiency. The proposed method is evaluated using numerical examples, demonstrating its advantages over existing approaches.
使用平方和优化的基于koopman的控制:提高稳定性保证和数据效率
本文提出了一种利用库普曼算子设计未知非线性系统控制器的新方法。特别是,我们使用最近提出的面向稳定性和证书的扩展动态模式分解(SafEDMD)体系结构来生成具有经过认证的错误界限的数据驱动双线性代理模型。然后,在基于双线性系统的控制器设计中,通过计算得到的误差界,可以保证真正非线性系统的闭环稳定性。现有的方法过于逼近代理模型的双线性性,从而引入保守性并仅提供局部保证,我们通过在控制器设计中使用平方和(SOS)优化来明确地考虑双线性性。更准确地说,我们参数化了一个合理的控制器,稳定了受误差影响的双线性代理模型,从而稳定了潜在的非线性系统。所得到的SOS优化问题为基于半定规划的未知非线性系统提供了明确的数据驱动控制器设计条件。我们的方法通过建立更大的吸引力区域和提高数据效率显著降低了保守性。通过数值算例对该方法进行了评价,证明了其优于现有方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Control
European Journal of Control 工程技术-自动化与控制系统
CiteScore
5.80
自引率
5.90%
发文量
131
审稿时长
1 months
期刊介绍: The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field. The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering. The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications. Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results. The design and implementation of a successful control system requires the use of a range of techniques: Modelling Robustness Analysis Identification Optimization Control Law Design Numerical analysis Fault Detection, and so on.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信