Human growth hormone-overexpressing adipose-derived stem cells enhance fibroblast activity and accelerate burn wound healing via ERK pathway therapeutic potential of ADSCs in burn wound repair
{"title":"Human growth hormone-overexpressing adipose-derived stem cells enhance fibroblast activity and accelerate burn wound healing via ERK pathway therapeutic potential of ADSCs in burn wound repair","authors":"Yang Shao , Mei Han , Guodong Song , Cong Gao","doi":"10.1016/j.reth.2025.07.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Human growth hormone (HGH) enhances wound healing by promoting cell proliferation, angiogenesis, and tissue regeneration. This study investigated the effects of HGH-overexpressing Adipose-derived stem cells (HGH-ADSCs) on fibroblast function, ERK pathway activation, and burn wound healing.</div></div><div><h3>Methods</h3><div>ADSCs were isolated from adipose tissue, characterized via CD marker expression, and confirmed for multipotency using Oil Red O (adipogenesis), Alizarin Red S (osteogenesis), and Alcian Blue staining (chondrogenesis). ADSCs were then transduced with a lentiviral vector carrying HGH, generating HGH-ADSCs and confirmed by qRT-PCR. Fibroblasts (HDF-a) were co-cultured were co-cultured under HGH-ADSCs-conditioned medium and ADSCs-conditioned medium to assess proliferation (MTT assay), migration and invasion (Transwell), apoptosis (flow cytometry), and G0/G1 cell cycle progression. Western blotting determined ERK activation, and SCH772984 (ERK inhibitor) was used to confirm pathway dependency. A burn rat model was established with three treatment groups: HGH-ADSCs, ADSCs, and saline. and histopathology (H&E, TUNEL staining) analyzed epithelial regeneration and apoptosis. ELISA and biochemical assays quantified TNF-α, IL-1β, IL-6, MDA, SOD, and CAT in wound tissue homogenates.</div></div><div><h3>Results</h3><div>HGH-ADSCs significantly enhanced fibroblast proliferation, migration, invasion, and prolonged G0/G1 phase while reducing apoptosis (P < 0.05). ERK inhibition abolished these effects (P < 0.05). In vivo, HGH-ADSCs accelerated wound closure (P < 0.05), enhanced epithelialization, reduced inflammation, and increased collagen formation. Inflammatory cytokines (TNF-α, IL-1β, IL-6) and MDA were lowest, while SOD and CAT were highest in HGH-ADSC-treated wounds (P < 0.05).</div></div><div><h3>Conclusion</h3><div>ADSCs overexpressing HGH promote fibroblast activity, activate ERK signaling, and accelerate burn wound healing, demonstrating strong therapeutic potential.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"30 ","pages":"Pages 465-475"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320425001567","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Human growth hormone (HGH) enhances wound healing by promoting cell proliferation, angiogenesis, and tissue regeneration. This study investigated the effects of HGH-overexpressing Adipose-derived stem cells (HGH-ADSCs) on fibroblast function, ERK pathway activation, and burn wound healing.
Methods
ADSCs were isolated from adipose tissue, characterized via CD marker expression, and confirmed for multipotency using Oil Red O (adipogenesis), Alizarin Red S (osteogenesis), and Alcian Blue staining (chondrogenesis). ADSCs were then transduced with a lentiviral vector carrying HGH, generating HGH-ADSCs and confirmed by qRT-PCR. Fibroblasts (HDF-a) were co-cultured were co-cultured under HGH-ADSCs-conditioned medium and ADSCs-conditioned medium to assess proliferation (MTT assay), migration and invasion (Transwell), apoptosis (flow cytometry), and G0/G1 cell cycle progression. Western blotting determined ERK activation, and SCH772984 (ERK inhibitor) was used to confirm pathway dependency. A burn rat model was established with three treatment groups: HGH-ADSCs, ADSCs, and saline. and histopathology (H&E, TUNEL staining) analyzed epithelial regeneration and apoptosis. ELISA and biochemical assays quantified TNF-α, IL-1β, IL-6, MDA, SOD, and CAT in wound tissue homogenates.
Results
HGH-ADSCs significantly enhanced fibroblast proliferation, migration, invasion, and prolonged G0/G1 phase while reducing apoptosis (P < 0.05). ERK inhibition abolished these effects (P < 0.05). In vivo, HGH-ADSCs accelerated wound closure (P < 0.05), enhanced epithelialization, reduced inflammation, and increased collagen formation. Inflammatory cytokines (TNF-α, IL-1β, IL-6) and MDA were lowest, while SOD and CAT were highest in HGH-ADSC-treated wounds (P < 0.05).
期刊介绍:
Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine.
Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.