Ali Ahadi , Seyed Mostafa Mousavi , Amir Mohammad Alinia , Hossein Khademi
{"title":"Analytical simulation of the nonlinear Caputo fractional equations","authors":"Ali Ahadi , Seyed Mostafa Mousavi , Amir Mohammad Alinia , Hossein Khademi","doi":"10.1016/j.padiff.2025.101264","DOIUrl":null,"url":null,"abstract":"<div><div>Partial differential equations (PDEs), particularly those involving fractional derivatives, have garnered considerable attention due to their ability to model complex systems with memory and hereditary properties. This paper focuses on the generalized Caputo fractional equation and presents a comparative analysis of three powerful solution techniques: the Homotopy Perturbation Method (HPM), the Variational Iteration Method (VIM), and the Akbari-Ganji Method (AGM). These methods are applied to fractional differential equations (FDEs) to derive approximate solutions. The accuracy and effectiveness of the methods are demonstrated through detailed comparisons with exact solutions and previous works in the field.</div><div>The study highlights the strengths of each technique in handling non-linear and fractional-order problems, providing reliable results with minimal error. Specifically, the HPM and VIM show remarkable convergence properties, while the AGM proves efficient in solving both linear and non-linear equations. These methods are validated by comparing the results with known solutions, which shows that these techniques work for a wide range of FDEs. The present study underscores the applicability of these approaches in several scientific and technological domains, hence promoting more advancements in the numerical examination of fractional systems.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101264"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Partial differential equations (PDEs), particularly those involving fractional derivatives, have garnered considerable attention due to their ability to model complex systems with memory and hereditary properties. This paper focuses on the generalized Caputo fractional equation and presents a comparative analysis of three powerful solution techniques: the Homotopy Perturbation Method (HPM), the Variational Iteration Method (VIM), and the Akbari-Ganji Method (AGM). These methods are applied to fractional differential equations (FDEs) to derive approximate solutions. The accuracy and effectiveness of the methods are demonstrated through detailed comparisons with exact solutions and previous works in the field.
The study highlights the strengths of each technique in handling non-linear and fractional-order problems, providing reliable results with minimal error. Specifically, the HPM and VIM show remarkable convergence properties, while the AGM proves efficient in solving both linear and non-linear equations. These methods are validated by comparing the results with known solutions, which shows that these techniques work for a wide range of FDEs. The present study underscores the applicability of these approaches in several scientific and technological domains, hence promoting more advancements in the numerical examination of fractional systems.