{"title":"Computing positive tropical varieties and lower bounds on the number of positive roots","authors":"Kemal Rose , Máté L. Telek","doi":"10.1016/j.jsc.2025.102477","DOIUrl":null,"url":null,"abstract":"<div><div>We present two effective tools for computing the positive tropicalization of an algebraic variety. First, we outline conditions under which the initial ideal can be used to compute the positive tropicalization, offering a real analogue to the Fundamental Theorem of Tropical Geometry. Additionally, under certain technical assumptions, we provide a real version of the Transverse Intersection Theorem. Building on these results, we propose an algorithm to compute a combinatorial bound on the number of positive real roots of a system of parametrized polynomial equations. Furthermore, we discuss how this combinatorial bound can be applied to study the number of positive steady states of chemical reaction networks.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"132 ","pages":"Article 102477"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000598","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We present two effective tools for computing the positive tropicalization of an algebraic variety. First, we outline conditions under which the initial ideal can be used to compute the positive tropicalization, offering a real analogue to the Fundamental Theorem of Tropical Geometry. Additionally, under certain technical assumptions, we provide a real version of the Transverse Intersection Theorem. Building on these results, we propose an algorithm to compute a combinatorial bound on the number of positive real roots of a system of parametrized polynomial equations. Furthermore, we discuss how this combinatorial bound can be applied to study the number of positive steady states of chemical reaction networks.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.