Electromechanical modeling of localized micro-scale piezoelectric interaction at impact site

IF 4.2 2区 工程技术 Q1 MECHANICS
Milad Hasani , Sam Riahi , Alireza Rezania
{"title":"Electromechanical modeling of localized micro-scale piezoelectric interaction at impact site","authors":"Milad Hasani ,&nbsp;Sam Riahi ,&nbsp;Alireza Rezania","doi":"10.1016/j.euromechsol.2025.105799","DOIUrl":null,"url":null,"abstract":"<div><div>The non-conformal contact between a moving spherical ball and a fixed piezoelectric layer results in a micro-scale contact area. This research investigates the localized micro-scale piezoelectric interaction at the contact area on the piezoelectric layer's electrical response under the impact excitation. The ball indentation causes time-variable 3D mechanical stress and electric displacement distributions around the impact site in the piezoelectric layer. In this study, an innovative semi-analytical model is developed that divides the piezoelectric layer into two zones. This technique enables 2D-axisymmetric analysis of non-axially symmetric patches, reducing computational complexity. The results indicate that a high-voltage zone appears beneath the contact area, which can significantly contribute to the piezoelectric's electrical response. For instance, under a specific impact excitation and electrical boundary condition, the peak voltage across the piezoelectric thickness reaches 600 V while the output voltage is 1 V. Validation and comparison against experimental tests and the FEM method confirm the accuracy and efficiency of this model in the prediction of piezoelectric's transient voltage signal and voltage peak applicable to energy harvesting and sensory applications. Finally, the developed model is applied in the practical optimization of an implantable energy harvester for biomedical applications.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"115 ","pages":"Article 105799"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753825002335","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The non-conformal contact between a moving spherical ball and a fixed piezoelectric layer results in a micro-scale contact area. This research investigates the localized micro-scale piezoelectric interaction at the contact area on the piezoelectric layer's electrical response under the impact excitation. The ball indentation causes time-variable 3D mechanical stress and electric displacement distributions around the impact site in the piezoelectric layer. In this study, an innovative semi-analytical model is developed that divides the piezoelectric layer into two zones. This technique enables 2D-axisymmetric analysis of non-axially symmetric patches, reducing computational complexity. The results indicate that a high-voltage zone appears beneath the contact area, which can significantly contribute to the piezoelectric's electrical response. For instance, under a specific impact excitation and electrical boundary condition, the peak voltage across the piezoelectric thickness reaches 600 V while the output voltage is 1 V. Validation and comparison against experimental tests and the FEM method confirm the accuracy and efficiency of this model in the prediction of piezoelectric's transient voltage signal and voltage peak applicable to energy harvesting and sensory applications. Finally, the developed model is applied in the practical optimization of an implantable energy harvester for biomedical applications.
冲击现场局部微尺度压电相互作用的机电建模
运动球面与固定压电层之间的非保形接触产生了微尺度的接触面积。研究了接触区局部微尺度压电相互作用对冲击激励下压电层电响应的影响。球压痕导致压电层中冲击部位周围的三维机械应力和电位移随时间变化。在这项研究中,建立了一种创新的半解析模型,将压电层划分为两个区域。该技术支持非轴对称贴片的二维轴对称分析,降低了计算复杂性。结果表明,接触区下方存在一个高压区,这对压电材料的电响应有重要影响。例如,在特定的冲击激励和电边界条件下,压电厚度两端的峰值电压达到600 V,而输出电压为1 V。通过与实验测试和有限元方法的验证和比较,验证了该模型在预测压电体瞬态电压信号和电压峰值方面的准确性和有效性,适用于能量采集和传感应用。最后,将所建立的模型应用于生物医学植入式能量采集器的实际优化中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信