Impact of synthesis temperature on the physicochemical and optoelectronic properties of titania and oxidized carbon nanotube nanocomposites for the degradation of Remazol brilliant blue R

IF 5.45 Q1 Physics and Astronomy
Standford M. Pedzisai , Sithembela A. Zikalala , Lerato L. Mokoloko , Nozipho N. Gumbi , Machawe M. Motsa , Edward N. Nxumalo
{"title":"Impact of synthesis temperature on the physicochemical and optoelectronic properties of titania and oxidized carbon nanotube nanocomposites for the degradation of Remazol brilliant blue R","authors":"Standford M. Pedzisai ,&nbsp;Sithembela A. Zikalala ,&nbsp;Lerato L. Mokoloko ,&nbsp;Nozipho N. Gumbi ,&nbsp;Machawe M. Motsa ,&nbsp;Edward N. Nxumalo","doi":"10.1016/j.nanoso.2025.101519","DOIUrl":null,"url":null,"abstract":"<div><div>A facile microwave irradiation-assisted hydrothermal method was employed in the synthesis of nanocomposites of titanium dioxide (TiO<sub>2</sub>) and oxidized carbon nanotubes (OCNTs) to investigate the effect of synthesis temperature on their properties and photocatalytic performance. The synthesis temperatures used were 90, 120, 150, and 180 °C to produce nanocomposites T90, T120, T150, and T180, respectively. Attachment of TiO<sub>2</sub> to the surface of the OCNTs and presence of the OCNTs thereof was confirmed by transmission electron microscopy (TEM) as well as Raman spectroscopy. Powder X-ray diffraction (p-XRD) confirmed that the syntheses yielded the anatase titania crystalline polymorph. Ultraviolet (UV) spectroscopy results showed that the indirect energy bandgaps of the nanocomposites were all within the visible light range and increased with synthesis temperature in the order 2.34 eV, 2.75 eV, 2.87 eV, and 3.08 eV. Charge carrier recombination inhibition also increased with the synthesis temperature of the nanocomposites as revealed by the photoluminescence (PL) studies, at an excitation wavelength of 410 nm. The photocatalytic activities of the nanocomposites were tested in the photodegradation of Remazol brilliant blue R (RBBR) dye under sunlight for up to 180 min and the degradation followed the pseudo first order kinetics. Interestingly, the T180 nanocomposite demonstrated favorable comparability with other photocatalysts that have previously been applied for the degradation of RBBR dye in that, using sunlight , 99.1 % of the dye was degraded in a saline environment within 240 min, at a high pollutant to photocatalyst loading ratio. T180 further demonstrated high reusability without washing between the cycles by retaining in its 5th cycle 69.6 % and 89.5 % of its photocatalytic activity after 180 and 240 min, respectively. Based on this work, T180 is a potential catalyst for application in the remediation of industrial textile wastewater, especially laden with reactive dyes.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"43 ","pages":"Article 101519"},"PeriodicalIF":5.4500,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X25000897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

A facile microwave irradiation-assisted hydrothermal method was employed in the synthesis of nanocomposites of titanium dioxide (TiO2) and oxidized carbon nanotubes (OCNTs) to investigate the effect of synthesis temperature on their properties and photocatalytic performance. The synthesis temperatures used were 90, 120, 150, and 180 °C to produce nanocomposites T90, T120, T150, and T180, respectively. Attachment of TiO2 to the surface of the OCNTs and presence of the OCNTs thereof was confirmed by transmission electron microscopy (TEM) as well as Raman spectroscopy. Powder X-ray diffraction (p-XRD) confirmed that the syntheses yielded the anatase titania crystalline polymorph. Ultraviolet (UV) spectroscopy results showed that the indirect energy bandgaps of the nanocomposites were all within the visible light range and increased with synthesis temperature in the order 2.34 eV, 2.75 eV, 2.87 eV, and 3.08 eV. Charge carrier recombination inhibition also increased with the synthesis temperature of the nanocomposites as revealed by the photoluminescence (PL) studies, at an excitation wavelength of 410 nm. The photocatalytic activities of the nanocomposites were tested in the photodegradation of Remazol brilliant blue R (RBBR) dye under sunlight for up to 180 min and the degradation followed the pseudo first order kinetics. Interestingly, the T180 nanocomposite demonstrated favorable comparability with other photocatalysts that have previously been applied for the degradation of RBBR dye in that, using sunlight , 99.1 % of the dye was degraded in a saline environment within 240 min, at a high pollutant to photocatalyst loading ratio. T180 further demonstrated high reusability without washing between the cycles by retaining in its 5th cycle 69.6 % and 89.5 % of its photocatalytic activity after 180 and 240 min, respectively. Based on this work, T180 is a potential catalyst for application in the remediation of industrial textile wastewater, especially laden with reactive dyes.
合成温度对氧化碳纳米管/二氧化钛纳米复合材料降解雷马唑亮蓝R的理化及光电性能的影响
采用微波辅助水热法制备了二氧化钛(TiO2)与氧化碳纳米管(OCNTs)纳米复合材料,考察了合成温度对其性能和光催化性能的影响。合成温度分别为90、120、150和180℃,制备了T90、T120、T150和T180纳米复合材料。通过透射电子显微镜(TEM)和拉曼光谱(Raman spectroscopy)证实了二氧化钛附着在碳纳米管表面以及碳纳米管的存在。粉末x射线衍射(p-XRD)证实该合成产物为锐钛矿型钛晶多晶。紫外光谱结果表明,纳米复合材料的间接能隙均在可见光范围内,并随合成温度的升高依次增大,分别为2.34 eV、2.75 eV、2.87 eV和3.08 eV。光致发光(PL)研究表明,在激发波长为410 nm时,随着纳米复合材料合成温度的升高,载流子复合的抑制作用也有所增强。在180 min的光照下,测试了纳米复合材料对雷马唑亮蓝R (RBBR)染料的光催化活性,降解符合准一级动力学。有趣的是,T180纳米复合材料与之前用于降解RBBR染料的其他光催化剂表现出良好的可比性,在240 min的盐水环境中,在高污染物和光催化剂负载比下,99.1 %的染料在阳光下被降解。T180在180和240 min后,在第5个循环中分别保持了69.6 %和89.5 %的光催化活性,进一步证明了高的可重复使用性。研究结果表明,T180是一种很有潜力的催化剂,可用于工业纺织废水,特别是含活性染料废水的修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Structures & Nano-Objects
Nano-Structures & Nano-Objects Physics and Astronomy-Condensed Matter Physics
CiteScore
9.20
自引率
0.00%
发文量
60
审稿时长
22 days
期刊介绍: Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信