Valorization of tannery-derived FAMEs into bio-based epoxides via chemo-enzymatic synthesis

Víctor Deroncelé , Ismael Tahmaz , Sílvia Sorolla , Anna Bacardit
{"title":"Valorization of tannery-derived FAMEs into bio-based epoxides via chemo-enzymatic synthesis","authors":"Víctor Deroncelé ,&nbsp;Ismael Tahmaz ,&nbsp;Sílvia Sorolla ,&nbsp;Anna Bacardit","doi":"10.1016/j.clce.2025.100195","DOIUrl":null,"url":null,"abstract":"<div><div>The urgent transition toward low-carbon chemical manufacturing has prompted the development of renewable alternatives to fossil-based epoxy intermediates. This study presents an integrated and resource-efficient chemo-enzymatic route for the synthesis of epoxidized methyl oleate (EMO) from fatty acid methyl esters (FAMEs) derived from tannery waste—a lipid-rich but underutilized industrial residue. A single-step urea complexation achieved 86.7 ± 0.6 % methyl oleate purity with a 38.1 ± 0.9 % recovery yield, while the saturated-rich co-product (∼40 %) exhibited physicochemical properties suitable for biodiesel or lubricant applications.</div><div>Subsequent epoxidation was carried out using immobilized <em>Candida antarctica</em> lipase B (Novozym® 435) and in situ generated performic acid, yielding an oxirane oxygen content of 6.42 ± 0.14 %, corresponding to &gt;90 % conversion of double bonds under mild conditions. The enzyme retained 72 % of its initial activity after ten reuse cycles, significantly enhancing process circularity and reducing catalytic costs.</div><div>Green chemistry metrics were favorable: atom economy reached 86 %, solvent recovery exceeded 85 %, and the E-factor remained as low as 0.86 kg waste/kg EMO. A cradle-to-gate life cycle assessment (LCA) estimated a global warming potential (GWP) of 1.92 kg CO₂-eq/kg EMO—representing a 63 % reduction compared to petrochemical benchmarks. Economic analysis at the 1000 t/year scale yielded a production cost of €1.57/kg with an internal rate of return (IRR) of 15 %.</div><div>Overall, this work demonstrates how lipid-rich industrial residues can be converted into high-value bio-based epoxides through a scalable and environmentally sound chemo-enzymatic route, aligning with circular economy principles and green chemistry targets.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100195"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782325000506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The urgent transition toward low-carbon chemical manufacturing has prompted the development of renewable alternatives to fossil-based epoxy intermediates. This study presents an integrated and resource-efficient chemo-enzymatic route for the synthesis of epoxidized methyl oleate (EMO) from fatty acid methyl esters (FAMEs) derived from tannery waste—a lipid-rich but underutilized industrial residue. A single-step urea complexation achieved 86.7 ± 0.6 % methyl oleate purity with a 38.1 ± 0.9 % recovery yield, while the saturated-rich co-product (∼40 %) exhibited physicochemical properties suitable for biodiesel or lubricant applications.
Subsequent epoxidation was carried out using immobilized Candida antarctica lipase B (Novozym® 435) and in situ generated performic acid, yielding an oxirane oxygen content of 6.42 ± 0.14 %, corresponding to >90 % conversion of double bonds under mild conditions. The enzyme retained 72 % of its initial activity after ten reuse cycles, significantly enhancing process circularity and reducing catalytic costs.
Green chemistry metrics were favorable: atom economy reached 86 %, solvent recovery exceeded 85 %, and the E-factor remained as low as 0.86 kg waste/kg EMO. A cradle-to-gate life cycle assessment (LCA) estimated a global warming potential (GWP) of 1.92 kg CO₂-eq/kg EMO—representing a 63 % reduction compared to petrochemical benchmarks. Economic analysis at the 1000 t/year scale yielded a production cost of €1.57/kg with an internal rate of return (IRR) of 15 %.
Overall, this work demonstrates how lipid-rich industrial residues can be converted into high-value bio-based epoxides through a scalable and environmentally sound chemo-enzymatic route, aligning with circular economy principles and green chemistry targets.

Abstract Image

皮革衍生的FAMEs通过化学酶合成转化为生物基环氧化物
向低碳化工生产的迫切转变促使了可再生替代品的发展,以替代化石基环氧中间体。本研究提出了一种综合且资源高效的化学-酶途径,用于从鞣革废料中提取脂肪酸甲酯(FAMEs)合成环氧化油酸甲酯(EMO)。鞣革废料富含脂质,但未充分利用的工业残渣。单步尿素络合的油酸甲酯纯度为86.7±0.6%,回收率为38.1±0.9%,而富含饱和的副产物(约40%)具有适合生物柴油或润滑剂应用的理化性质。随后使用固定化的南极念珠菌脂肪酶B (Novozym®435)和原位生成的甲酸进行环氧化,得到氧环含量为6.42±0.14%,对应于温和条件下双键转化率为>; 90%。该酶在重复使用10次后仍保持了72%的初始活性,显著提高了工艺循环性,降低了催化成本。绿色化学指标良好:原子经济性达到86%,溶剂回收率超过85%,e因子保持在0.86 kg废物/kg EMO的低水平。从摇篮到闸门的生命周期评估(LCA)估计,全球变暖潜能值(GWP)为1.92千克二氧化碳当量/千克emo,与石化基准相比减少了63%。经济分析显示,1000吨/年的生产成本为1.57欧元/公斤,内部收益率(IRR)为15%。总的来说,这项工作展示了如何通过可扩展和环保的化学酶途径将富含脂质的工业残留物转化为高价值的生物基环氧化物,符合循环经济原则和绿色化学目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信