Jiaxiang Li , John Calautit , Carlos Jimenez-Bescos , Wenjie Song , Saffa Riffat , Qun Chen
{"title":"Climate-adaptive windcatcher natural ventilation integrated with passive and low-energy technologies: A review of current and future developments","authors":"Jiaxiang Li , John Calautit , Carlos Jimenez-Bescos , Wenjie Song , Saffa Riffat , Qun Chen","doi":"10.1016/j.buildenv.2025.113436","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of natural ventilation systems, such as windcatchers, in modern buildings has garnered interest due to rising energy costs and the need for sustainable practices. Windcatchers have been adapted in many regions to enhance indoor air quality and comfort while reducing reliance on mechanical systems and air conditioners. However, extreme climates, such as hot, humid, and cold conditions, pose challenges to effective windcatcher ventilation. Consequently, passive or low-energy cooling, heating and dehumidification technologies have been developed and integrated into windcatchers to improve thermal performance. Despite extensive research, a comprehensive review synthesizing windcatcher integration with passive and low-energy technologies across diverse climates is lacking. Existing studies often focus on specific elements or singular climatic conditions, leaving a gap in understanding the holistic application and optimization of these systems in various environments. This review addresses this gap by analyzing 147 studies on windcatchers and integrating windcatchers with technologies such as evaporative cooling, earth-air heat exchangers, heat pipes, and phase change materials. It evaluates the performance of these systems in hot and arid, temperate, tropical, continental, and polar climates, offering insights into their effectiveness and challenges. Key findings indicate that windcatchers with evaporative cooling effectively reduce indoor temperatures in hot, arid climates, though water scarcity remains a limitation. Earth-air heat exchangers and passive heat recovery technologies enhance efficiency in temperate regions, while indirect evaporative cooling is promising for humidity management in tropical climates. For continental and polar climates, integrating windcatchers with stoves, heat recovery, and solar thermal technologies is proposed, as traditional designs are inadequate in extreme cold. The review offers tailored recommendations for windcatcher designs across climates, guiding future research.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"284 ","pages":"Article 113436"},"PeriodicalIF":7.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360132325009114","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of natural ventilation systems, such as windcatchers, in modern buildings has garnered interest due to rising energy costs and the need for sustainable practices. Windcatchers have been adapted in many regions to enhance indoor air quality and comfort while reducing reliance on mechanical systems and air conditioners. However, extreme climates, such as hot, humid, and cold conditions, pose challenges to effective windcatcher ventilation. Consequently, passive or low-energy cooling, heating and dehumidification technologies have been developed and integrated into windcatchers to improve thermal performance. Despite extensive research, a comprehensive review synthesizing windcatcher integration with passive and low-energy technologies across diverse climates is lacking. Existing studies often focus on specific elements or singular climatic conditions, leaving a gap in understanding the holistic application and optimization of these systems in various environments. This review addresses this gap by analyzing 147 studies on windcatchers and integrating windcatchers with technologies such as evaporative cooling, earth-air heat exchangers, heat pipes, and phase change materials. It evaluates the performance of these systems in hot and arid, temperate, tropical, continental, and polar climates, offering insights into their effectiveness and challenges. Key findings indicate that windcatchers with evaporative cooling effectively reduce indoor temperatures in hot, arid climates, though water scarcity remains a limitation. Earth-air heat exchangers and passive heat recovery technologies enhance efficiency in temperate regions, while indirect evaporative cooling is promising for humidity management in tropical climates. For continental and polar climates, integrating windcatchers with stoves, heat recovery, and solar thermal technologies is proposed, as traditional designs are inadequate in extreme cold. The review offers tailored recommendations for windcatcher designs across climates, guiding future research.
期刊介绍:
Building and Environment, an international journal, is dedicated to publishing original research papers, comprehensive review articles, editorials, and short communications in the fields of building science, urban physics, and human interaction with the indoor and outdoor built environment. The journal emphasizes innovative technologies and knowledge verified through measurement and analysis. It covers environmental performance across various spatial scales, from cities and communities to buildings and systems, fostering collaborative, multi-disciplinary research with broader significance.