Ronald D. Sands , Liz Wachs , Patrick Lamers , Olivier Bahn , Robert H. Beach , Matthew Binsted , Geoffrey Blanford , Yongxia Cai , Francisco De La Chesnaye , James A. Edmonds , Leonard Göke , Chioke Harris , Christopher Hoehne , Gyungwon J. Kim , Page Kyle , Haewon McJeon , Robbie Orvis , Sharon Showalter , Aditya Sinha , Emma Starke , Frances Wood
{"title":"Bioenergy pathways within United States net-zero CO2 emissions scenarios in the Energy Modeling Forum 37 study","authors":"Ronald D. Sands , Liz Wachs , Patrick Lamers , Olivier Bahn , Robert H. Beach , Matthew Binsted , Geoffrey Blanford , Yongxia Cai , Francisco De La Chesnaye , James A. Edmonds , Leonard Göke , Chioke Harris , Christopher Hoehne , Gyungwon J. Kim , Page Kyle , Haewon McJeon , Robbie Orvis , Sharon Showalter , Aditya Sinha , Emma Starke , Frances Wood","doi":"10.1016/j.egycc.2025.100209","DOIUrl":null,"url":null,"abstract":"<div><div>The Energy Modeling Forum 37 study is organized around carbon dioxide (CO<sub>2</sub>) mitigation scenarios reaching net-zero CO<sub>2</sub> emissions by 2050 in the United States. This paper summarizes the potential contribution of bioenergy use in the electric power, transportation, industrial, and buildings sectors toward meeting that target based on model results. Thirteen modeling teams reported bioenergy consumption in the Reference and Net Zero scenarios. Consumption of bioenergy increased over time in the Reference scenario, from an average across models of 3.2 exajoules (EJ) in 2020 to 3.8 EJ in 2050. Average bioenergy consumption in 2050 increased further to 7.3 EJ in the Net Zero scenario. All scenarios that reach net-zero emissions required some form of carbon dioxide removal to offset emissions that are difficult to reduce. Carbon dioxide removal using bioenergy with CO<sub>2</sub> capture and storage (BECCS) varies widely across models, up to 1000 Mt CO<sub>2</sub> in 2050. Some models rely instead on direct air carbon capture and storage (DACCS), up to 2200 Mt CO<sub>2</sub>, and others use a combination of BECCS and DACCS. Model results show a strong inverse relationship between the amounts of BECCS and DACCS deployed. All modeling teams assumed a carbon sink from land use, land use change, and forestry, further offsetting a portion of emissions from fossil fuels and industry that are expensive to eliminate. Bioenergy consumption in 2050 decreased by an average of 1.5 EJ across eight models in a Net Zero+ scenario relative to the Net Zero scenario, due in part to a lower equilibrium carbon price resulting from optimistic cost assumptions for all energy technologies.</div></div>","PeriodicalId":72914,"journal":{"name":"Energy and climate change","volume":"6 ","pages":"Article 100209"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and climate change","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666278725000364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The Energy Modeling Forum 37 study is organized around carbon dioxide (CO2) mitigation scenarios reaching net-zero CO2 emissions by 2050 in the United States. This paper summarizes the potential contribution of bioenergy use in the electric power, transportation, industrial, and buildings sectors toward meeting that target based on model results. Thirteen modeling teams reported bioenergy consumption in the Reference and Net Zero scenarios. Consumption of bioenergy increased over time in the Reference scenario, from an average across models of 3.2 exajoules (EJ) in 2020 to 3.8 EJ in 2050. Average bioenergy consumption in 2050 increased further to 7.3 EJ in the Net Zero scenario. All scenarios that reach net-zero emissions required some form of carbon dioxide removal to offset emissions that are difficult to reduce. Carbon dioxide removal using bioenergy with CO2 capture and storage (BECCS) varies widely across models, up to 1000 Mt CO2 in 2050. Some models rely instead on direct air carbon capture and storage (DACCS), up to 2200 Mt CO2, and others use a combination of BECCS and DACCS. Model results show a strong inverse relationship between the amounts of BECCS and DACCS deployed. All modeling teams assumed a carbon sink from land use, land use change, and forestry, further offsetting a portion of emissions from fossil fuels and industry that are expensive to eliminate. Bioenergy consumption in 2050 decreased by an average of 1.5 EJ across eight models in a Net Zero+ scenario relative to the Net Zero scenario, due in part to a lower equilibrium carbon price resulting from optimistic cost assumptions for all energy technologies.