Hadi Rasmi , Seyed Sajad Ahmadpour , Amir Seyyedabbasi , Nima Jafari Navimipour , Wasiq Khan
{"title":"Sustainable IoT solutions: Developing a quantum-aware circuit for improving energy efficiency based on atomic silicon","authors":"Hadi Rasmi , Seyed Sajad Ahmadpour , Amir Seyyedabbasi , Nima Jafari Navimipour , Wasiq Khan","doi":"10.1016/j.suscom.2025.101161","DOIUrl":null,"url":null,"abstract":"<div><div>Internet of Things (IoT) can be described as a network of physical objects equipped with sensors, processing power, software, and any other types of technology that allows them to communicate and share data with other devices and systems. The proliferation of IoT is conditional on developing energy-saving blocks of computation with sustained connectivity and real-time information processing capabilities. Traditional technologies like CMOS and VLSI circuits face critical failures at scales below 4 nm, including excessive current leakages, high energy consumption, and thermal instability, which make them less appropriate for future micro-scale IoT chips. To overcome such limitations, a new alternative technology called Atomic Silicon Dangling Bond (ASDB) nanotechnology has been developed, leveraging atomistic accuracy in countering CMOS-related inefficiencies and supporting quantum-inspired computational processes. Since Arithmetic and Logic Unit (ALU) is a primary unit of any digital system like IoT, this work introduces the necessity of quantum-aware ALU development, taking a quantum-inspired computational mechanism and leveraging ASDB’s native quantum behavior for increased performance, accuracy, and efficiency in IoT systems. A single-bit ALU for micro-IoT blocks is developed using ASDB nanotechnology with robust computational design to guarantee operational integrity. The design is analyzed through SiQAD simulator in terms of energy consumption, logical accuracy, and area consumption. The proposed ALU in this work demonstrates a reduction in occupied area and quantum cell count, highlighting a significant step toward ultra-dense integration. Furthermore, with an energy consumption reduction of 3.19% compared to the best design, this ALU offers a sustainable and practical solution for low-power IoT applications in the future.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"47 ","pages":"Article 101161"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000824","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Internet of Things (IoT) can be described as a network of physical objects equipped with sensors, processing power, software, and any other types of technology that allows them to communicate and share data with other devices and systems. The proliferation of IoT is conditional on developing energy-saving blocks of computation with sustained connectivity and real-time information processing capabilities. Traditional technologies like CMOS and VLSI circuits face critical failures at scales below 4 nm, including excessive current leakages, high energy consumption, and thermal instability, which make them less appropriate for future micro-scale IoT chips. To overcome such limitations, a new alternative technology called Atomic Silicon Dangling Bond (ASDB) nanotechnology has been developed, leveraging atomistic accuracy in countering CMOS-related inefficiencies and supporting quantum-inspired computational processes. Since Arithmetic and Logic Unit (ALU) is a primary unit of any digital system like IoT, this work introduces the necessity of quantum-aware ALU development, taking a quantum-inspired computational mechanism and leveraging ASDB’s native quantum behavior for increased performance, accuracy, and efficiency in IoT systems. A single-bit ALU for micro-IoT blocks is developed using ASDB nanotechnology with robust computational design to guarantee operational integrity. The design is analyzed through SiQAD simulator in terms of energy consumption, logical accuracy, and area consumption. The proposed ALU in this work demonstrates a reduction in occupied area and quantum cell count, highlighting a significant step toward ultra-dense integration. Furthermore, with an energy consumption reduction of 3.19% compared to the best design, this ALU offers a sustainable and practical solution for low-power IoT applications in the future.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.