Area source emissions: a validation study of CALPUFF and LAPMOD models

IF 3.4 Q2 ENVIRONMENTAL SCIENCES
Francesca Tagliaferri, Alessandra Rota, Marzio Invernizzi
{"title":"Area source emissions: a validation study of CALPUFF and LAPMOD models","authors":"Francesca Tagliaferri,&nbsp;Alessandra Rota,&nbsp;Marzio Invernizzi","doi":"10.1016/j.aeaoa.2025.100348","DOIUrl":null,"url":null,"abstract":"<div><div>Dispersion models are essential for predicting pollutant behavior in the atmosphere, but discrepancies between models can introduce uncertainties. Validating models with real data is crucial to ensuring accuracy. Previous studies have highlighted differences between CALPUFF and the particle model LAPMOD: while both yield relatively similar results for point sources, significant discrepancies arise for area sources. This study assesses the performance of both models using experimental datasets. The analysis shows that CALPUFF estimates higher concentrations than LAPMOD and performs better against observed values, meeting all validation criteria. LAPMOD is less consistent, with a non-optimal FAC2 and high VG due to outliers caused by receptor arrangement. However, both models align well with experimental data under ideal conditions. In conclusion, CALPUFF proves more reliable, whereas LAPMOD, despite its tendency to underestimate, provides useful results once outliers are excluded.</div></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"27 ","pages":"Article 100348"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590162125000383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Dispersion models are essential for predicting pollutant behavior in the atmosphere, but discrepancies between models can introduce uncertainties. Validating models with real data is crucial to ensuring accuracy. Previous studies have highlighted differences between CALPUFF and the particle model LAPMOD: while both yield relatively similar results for point sources, significant discrepancies arise for area sources. This study assesses the performance of both models using experimental datasets. The analysis shows that CALPUFF estimates higher concentrations than LAPMOD and performs better against observed values, meeting all validation criteria. LAPMOD is less consistent, with a non-optimal FAC2 and high VG due to outliers caused by receptor arrangement. However, both models align well with experimental data under ideal conditions. In conclusion, CALPUFF proves more reliable, whereas LAPMOD, despite its tendency to underestimate, provides useful results once outliers are excluded.

Abstract Image

区域源排放:CALPUFF和LAPMOD模型的验证研究
色散模型对于预测大气中污染物的行为至关重要,但模型之间的差异会带来不确定性。用真实数据验证模型对于确保准确性至关重要。先前的研究强调了CALPUFF和粒子模型LAPMOD之间的差异:虽然两者对点源产生相对相似的结果,但对面积源产生显著差异。本研究使用实验数据集评估了这两种模型的性能。分析表明,CALPUFF估计的浓度高于LAPMOD,并且对观测值的性能更好,符合所有验证标准。LAPMOD不太一致,由于受体排列引起的异常值导致FAC2非最佳,VG高。然而,在理想条件下,这两种模型都与实验数据很好地吻合。总之,CALPUFF证明更可靠,而LAPMOD,尽管其倾向于低估,一旦排除异常值,提供有用的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Environment: X
Atmospheric Environment: X Environmental Science-Environmental Science (all)
CiteScore
8.00
自引率
0.00%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信