{"title":"Functional characterization of CtWRKY70 transcription factor from Cynanchum thesioides in salt and drought stress resistance","authors":"Xiaoyao Chang , Xiaoyan Zhang , Xiumei Huang , Fenglan Zhang , Zhongren Yang","doi":"10.1016/j.jplph.2025.154575","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>WRKY</em> transcription factor <em>CtWRKY70</em> from <em>Cynanchum thesioides</em> was functionally characterized to explore its role in abiotic stress responses. <em>CtWRKY70</em>, encoding a 340-amino acid protein from the WRKY Group III subfamily, localizes to the nucleus and exhibits transcriptional activation activity. Its expression is significantly induced by salt and drought stress. Overexpression of <em>CtWRKY70</em> in <em>Arabidopsis</em> improved tolerance to both stresses, as evidenced by enhanced survival rates, maintained biomass, and preserved chlorophyll content. Transgenic lines exhibited elevated antioxidant enzyme activities (SOD, CAT, POD) and increased proline accumulation, with <em>CtWRKY70</em> directly bound to the promoter of the <em>AtSOD1</em> gene as confirmed by electrophoretic mobility shift assay (EMSA) and yeast one-hybrid (Y1H) assays, indicating enhanced ROS scavenging and osmoregulation. In contrast, CtWRKY70-silenced plants showed heightened stress sensitivity, characterized by greater wilting, increased stomatal aperture, and accelerated water loss. Y2H and BiFC assays confirmed the interaction of CtWRKY70 with another stress-responsive WRKY protein, CtWRKY41. These results demonstrate that <em>CtWRKY70</em> positively regulates drought and salt tolerance by coordinating antioxidant defense and osmotic adjustment. This study provides valuable insights into the molecular mechanisms of WRKY-mediated stress adaptation in horticultural species, positioning <em>CtWRKY70</em> as a potential genetic target for improving crop resilience.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"312 ","pages":"Article 154575"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161725001579","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The WRKY transcription factor CtWRKY70 from Cynanchum thesioides was functionally characterized to explore its role in abiotic stress responses. CtWRKY70, encoding a 340-amino acid protein from the WRKY Group III subfamily, localizes to the nucleus and exhibits transcriptional activation activity. Its expression is significantly induced by salt and drought stress. Overexpression of CtWRKY70 in Arabidopsis improved tolerance to both stresses, as evidenced by enhanced survival rates, maintained biomass, and preserved chlorophyll content. Transgenic lines exhibited elevated antioxidant enzyme activities (SOD, CAT, POD) and increased proline accumulation, with CtWRKY70 directly bound to the promoter of the AtSOD1 gene as confirmed by electrophoretic mobility shift assay (EMSA) and yeast one-hybrid (Y1H) assays, indicating enhanced ROS scavenging and osmoregulation. In contrast, CtWRKY70-silenced plants showed heightened stress sensitivity, characterized by greater wilting, increased stomatal aperture, and accelerated water loss. Y2H and BiFC assays confirmed the interaction of CtWRKY70 with another stress-responsive WRKY protein, CtWRKY41. These results demonstrate that CtWRKY70 positively regulates drought and salt tolerance by coordinating antioxidant defense and osmotic adjustment. This study provides valuable insights into the molecular mechanisms of WRKY-mediated stress adaptation in horticultural species, positioning CtWRKY70 as a potential genetic target for improving crop resilience.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.