João Marcelo Baptista , Leonardo O. Brenner , João Victtor Koga , Victor A. Ohannesian , Leonardo A. Ito , Paulo H. Nabarro , Lucas P. Santos , Arthur Henrique , Gustavo de Oliveira Almeida , Lorran U. Berbet , Thiago Paranhos , Vitor Nespoli , Raphael Bertani
{"title":"Radiomics, machine learning, and deep learning for hippocampal sclerosis identification: a systematic review and diagnostic meta-analysis","authors":"João Marcelo Baptista , Leonardo O. Brenner , João Victtor Koga , Victor A. Ohannesian , Leonardo A. Ito , Paulo H. Nabarro , Lucas P. Santos , Arthur Henrique , Gustavo de Oliveira Almeida , Lorran U. Berbet , Thiago Paranhos , Vitor Nespoli , Raphael Bertani","doi":"10.1016/j.yebeh.2025.110624","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Hippocampal sclerosis (HS) is the primary pathological finding in temporal lobe epilepsy (TLE) and a common cause of refractory seizures. Conventional diagnostic methods, such as EEG and MRI, have limitations. Artificial intelligence (AI) and radiomics, utilizing machine learning and deep learning, offer a non-invasive approach to enhance diagnostic accuracy. This study synthesized recent AI and radiomics research to improve HS detection in TLE.</div></div><div><h3>Methods</h3><div>PubMed/Medline, Embase, and Web of Science were systematically searched following PRISMA-DTA guidelines until May 2024. Statistical analysis was conducted using STATA 14. A bivariate model was used to pool sensitivity (SEN) and specificity (SPE) for HS detection, with I2 assessing heterogeneity.</div></div><div><h3>Results</h3><div>Six studies were included. The pooled sensitivity and specificity of AI-based models for HS detection in medial temporal lobe epilepsy (MTLE) were 0.91 (95 % CI: 0.83–0.96; I2 = 71.48 %) and 0.9 (95 % CI: 0.83–0.94; I2 = 69.62 %), with an AUC of 0.96. AI alone showed higher sensitivity (0.92) and specificity (0.93) than AI combined with radiomics (sensitivity: 0.88; specificity: 0.9). Among algorithms, support vector machine (SVM) had the highest performance (SEN: 0.92; SPE: 0.95), followed by convolutional neural networks (CNN) and logistic regression (LR).</div></div><div><h3>Conclusion</h3><div>AI models, particularly SVM, demonstrate high accuracy in detecting HS, with AI alone outperforming its combination with radiomics. These findings support the integration of AI into non-invasive diagnostic workflows, potentially enabling earlier detection and more personalized clinical decision-making in epilepsy care—ultimately contributing to improved patient outcomes and behavioral management.</div></div>","PeriodicalId":11847,"journal":{"name":"Epilepsy & Behavior","volume":"171 ","pages":"Article 110624"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsy & Behavior","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1525505025003646","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Hippocampal sclerosis (HS) is the primary pathological finding in temporal lobe epilepsy (TLE) and a common cause of refractory seizures. Conventional diagnostic methods, such as EEG and MRI, have limitations. Artificial intelligence (AI) and radiomics, utilizing machine learning and deep learning, offer a non-invasive approach to enhance diagnostic accuracy. This study synthesized recent AI and radiomics research to improve HS detection in TLE.
Methods
PubMed/Medline, Embase, and Web of Science were systematically searched following PRISMA-DTA guidelines until May 2024. Statistical analysis was conducted using STATA 14. A bivariate model was used to pool sensitivity (SEN) and specificity (SPE) for HS detection, with I2 assessing heterogeneity.
Results
Six studies were included. The pooled sensitivity and specificity of AI-based models for HS detection in medial temporal lobe epilepsy (MTLE) were 0.91 (95 % CI: 0.83–0.96; I2 = 71.48 %) and 0.9 (95 % CI: 0.83–0.94; I2 = 69.62 %), with an AUC of 0.96. AI alone showed higher sensitivity (0.92) and specificity (0.93) than AI combined with radiomics (sensitivity: 0.88; specificity: 0.9). Among algorithms, support vector machine (SVM) had the highest performance (SEN: 0.92; SPE: 0.95), followed by convolutional neural networks (CNN) and logistic regression (LR).
Conclusion
AI models, particularly SVM, demonstrate high accuracy in detecting HS, with AI alone outperforming its combination with radiomics. These findings support the integration of AI into non-invasive diagnostic workflows, potentially enabling earlier detection and more personalized clinical decision-making in epilepsy care—ultimately contributing to improved patient outcomes and behavioral management.
期刊介绍:
Epilepsy & Behavior is the fastest-growing international journal uniquely devoted to the rapid dissemination of the most current information available on the behavioral aspects of seizures and epilepsy.
Epilepsy & Behavior presents original peer-reviewed articles based on laboratory and clinical research. Topics are drawn from a variety of fields, including clinical neurology, neurosurgery, neuropsychiatry, neuropsychology, neurophysiology, neuropharmacology, and neuroimaging.
From September 2012 Epilepsy & Behavior stopped accepting Case Reports for publication in the journal. From this date authors who submit to Epilepsy & Behavior will be offered a transfer or asked to resubmit their Case Reports to its new sister journal, Epilepsy & Behavior Case Reports.