{"title":"Ultra-cold atoms as quantum simulators for relativistic phenomena","authors":"Ralf Schützhold","doi":"10.1016/j.ppnp.2025.104198","DOIUrl":null,"url":null,"abstract":"<div><div>The goal of this article is to review developments regarding the use of ultra-cold atoms as quantum simulators. Special emphasis is placed on relativistic quantum phenomena, which are presumably most interesting for the audience of this journal. After a brief introduction into the main idea of quantum simulators and the basic physics of ultra-cold atoms, relativistic quantum phenomena of linear fields are discussed, including Hawking radiation, the Unruh effect, cosmological particle creation, the Gibbons–Hawking and Ginzburg effects, super-radiance, Sauter–Schwinger and Breit–Wheeler pair creation, as well as the dynamical Casimir effect. After that, the focus is shifted to phenomena of non-linear fields, such as the sine–Gordon model, the Kibble–Zurek mechanism, false-vacuum decay, and quantum back-reaction. In order to place everything into proper context, the basic underlying mechanisms of these phenomena are briefly recapitulated before their simulators are discussed. Even though effort is made to provide a review as fair as possible, there can be no claim of completeness and the selection as well as the relative weights of the topics may well reflect the personal view and taste of the author.</div></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"145 ","pages":"Article 104198"},"PeriodicalIF":17.9000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641025000456","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The goal of this article is to review developments regarding the use of ultra-cold atoms as quantum simulators. Special emphasis is placed on relativistic quantum phenomena, which are presumably most interesting for the audience of this journal. After a brief introduction into the main idea of quantum simulators and the basic physics of ultra-cold atoms, relativistic quantum phenomena of linear fields are discussed, including Hawking radiation, the Unruh effect, cosmological particle creation, the Gibbons–Hawking and Ginzburg effects, super-radiance, Sauter–Schwinger and Breit–Wheeler pair creation, as well as the dynamical Casimir effect. After that, the focus is shifted to phenomena of non-linear fields, such as the sine–Gordon model, the Kibble–Zurek mechanism, false-vacuum decay, and quantum back-reaction. In order to place everything into proper context, the basic underlying mechanisms of these phenomena are briefly recapitulated before their simulators are discussed. Even though effort is made to provide a review as fair as possible, there can be no claim of completeness and the selection as well as the relative weights of the topics may well reflect the personal view and taste of the author.
期刊介绍:
Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.