Towards fully 3D printed dielectric elastomer actuators—A mini review

IF 4.7 Q2 ENGINEERING, MANUFACTURING
Rollo Pattinson , Nathan Ellmer , Mokarram Hossain , Rogelio Ortigosa , Jesús Martínez-Frutos , Antonio J. Gil , Anil Bastola
{"title":"Towards fully 3D printed dielectric elastomer actuators—A mini review","authors":"Rollo Pattinson ,&nbsp;Nathan Ellmer ,&nbsp;Mokarram Hossain ,&nbsp;Rogelio Ortigosa ,&nbsp;Jesús Martínez-Frutos ,&nbsp;Antonio J. Gil ,&nbsp;Anil Bastola","doi":"10.1016/j.addlet.2025.100304","DOIUrl":null,"url":null,"abstract":"<div><div>Dielectric elastomer actuators (DEAs) have attracted the interest of researchers in soft robotics and biomimetics, due to their versatile capabilities, explored through numerical analysis and experimentation. Advances in computational simulation techniques have accelerated numerical studies on DEAs, enabling even design optimisation for improved performance. However, as computational models grow in sophistication, the fabrication methods required often exceed the capabilities of traditional manufacturing. Additive manufacturing, in particular 3D printing, offers a promising solution to the challenges of realising intricate multi-functional designs developed through topology optimisation. Its precision and ability to create complex geometries make it well-suited for translating computational designs into functional DEA devices. This mini-review examines recent progress in 3D printing for DEA fabrication, emphasising its role in bridging the gap between computational design and physical devices. It also highlights emerging technologies and key challenges that must be addressed to fully realise topologically optimised DEA designs.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"14 ","pages":"Article 100304"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369025000374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Dielectric elastomer actuators (DEAs) have attracted the interest of researchers in soft robotics and biomimetics, due to their versatile capabilities, explored through numerical analysis and experimentation. Advances in computational simulation techniques have accelerated numerical studies on DEAs, enabling even design optimisation for improved performance. However, as computational models grow in sophistication, the fabrication methods required often exceed the capabilities of traditional manufacturing. Additive manufacturing, in particular 3D printing, offers a promising solution to the challenges of realising intricate multi-functional designs developed through topology optimisation. Its precision and ability to create complex geometries make it well-suited for translating computational designs into functional DEA devices. This mini-review examines recent progress in 3D printing for DEA fabrication, emphasising its role in bridging the gap between computational design and physical devices. It also highlights emerging technologies and key challenges that must be addressed to fully realise topologically optimised DEA designs.
迈向完全3D打印的介电弹性体致动器-一个小型回顾
介电弹性体致动器(dea)由于其多用途的性能,通过数值分析和实验进行了探索,引起了软机器人和仿生学研究人员的兴趣。计算模拟技术的进步加速了dea的数值研究,甚至可以优化设计以提高性能。然而,随着计算模型越来越复杂,所需的制造方法往往超过传统制造的能力。增材制造,特别是3D打印,为实现通过拓扑优化开发的复杂多功能设计的挑战提供了一个有前途的解决方案。它的精度和创建复杂几何形状的能力使其非常适合将计算设计转化为功能DEA设备。这篇迷你评论研究了DEA制造3D打印的最新进展,强调了其在弥合计算设计和物理设备之间差距方面的作用。它还强调了必须解决的新兴技术和关键挑战,以充分实现拓扑优化DEA设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信