Minsol Park, Mudit Kesharwani, Mohammad Attarian Shandiz, Mathieu Brochu
{"title":"Microstructure homogenization of laser powder bed fusion support-free low angle IN718 walls through heat treatment","authors":"Minsol Park, Mudit Kesharwani, Mohammad Attarian Shandiz, Mathieu Brochu","doi":"10.1016/j.addlet.2025.100312","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effectiveness of heat treatment (HT) to homogenize the microstructural and mechanical asymmetry between the bulk and the downskin regions of support-free IN718 walls fabricated at angles of 30°, 20°, 15°, and 10° In the as-built condition, the microhardness ranged from 340 ± 5 HV to 351 ± 4 HV for the bulk and from 315 ± 4 HV to 323 ± 10 HV for the downskin region, resulting in a maximum difference range of 35 HV. The HT eliminated this difference where microhardness values of 482 ± 3 HV in the bulk and 478 ± 4 HV in the downskin were measured. The HT induced γ″ precipitation with volume fraction and mean precipitate size in the bulk of 16.6 % and 24.7 ± 7.3 nm. These values are statistically comparable to those in the downskin: 15.8 % and 26.5 ± 7.9 nm. The similarity in the γ″ characteristics explains the recovery of the mismatch in hardness as γ″ contributes approximately 85 % of the strengthening in the HT condition.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"14 ","pages":"Article 100312"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369025000453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effectiveness of heat treatment (HT) to homogenize the microstructural and mechanical asymmetry between the bulk and the downskin regions of support-free IN718 walls fabricated at angles of 30°, 20°, 15°, and 10° In the as-built condition, the microhardness ranged from 340 ± 5 HV to 351 ± 4 HV for the bulk and from 315 ± 4 HV to 323 ± 10 HV for the downskin region, resulting in a maximum difference range of 35 HV. The HT eliminated this difference where microhardness values of 482 ± 3 HV in the bulk and 478 ± 4 HV in the downskin were measured. The HT induced γ″ precipitation with volume fraction and mean precipitate size in the bulk of 16.6 % and 24.7 ± 7.3 nm. These values are statistically comparable to those in the downskin: 15.8 % and 26.5 ± 7.9 nm. The similarity in the γ″ characteristics explains the recovery of the mismatch in hardness as γ″ contributes approximately 85 % of the strengthening in the HT condition.