Jiao Wang , Shengke Tang , Zilong Song , Xiaojun Fan , Chuang Gao
{"title":"A novel three-dimensional topology-optimized cold plate design for lithium-ion battery thermal management based on Murray’s law","authors":"Jiao Wang , Shengke Tang , Zilong Song , Xiaojun Fan , Chuang Gao","doi":"10.1016/j.ijheatfluidflow.2025.109997","DOIUrl":null,"url":null,"abstract":"<div><div>The flow channel design of liquid cold plates is a critical aspect of battery thermal management systems. This study aims to develop a novel 3D topology-optimized cold plate design method based on Murray’s law to enhance the thermal management performance of lithium-ion batteries. To address the limitations of the conventional approach that directly stretches 2D topology optimization results to form 3D cold plates, a new design strategy involving secondary optimization based on Murray’s law is proposed to generate scientifically improved 3D cold plate structures. Numerical simulations are employed to systematically investigate the effects of cold plate type, inlet mass flow rate, coolant and ambient temperatures, and channel depth on the performance of the cold plates. The optimal channel depth for each hydraulic diameter is identified. The results indicate that, under identical conditions, the optimized cold plate (OP) achieves a heat transfer coefficient improvement of up to 122.12 % compared to the conventional stretched plate (SP), significantly enhancing battery temperature control. Moreover, the Performance Evaluation Criterion (PEC) of the OP increases by up to 55.36 % relative to the SP, and can be further improved by 34.84 % through channel depth optimization. The study also reveals that for each inlet hydraulic diameter, the optimal channel depth is 0.5 mm greater than that of the corresponding SP. This research provides a new optimization approach and methodology for the efficient design of cold plates in lithium-ion battery thermal management systems.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"116 ","pages":"Article 109997"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X25002553","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The flow channel design of liquid cold plates is a critical aspect of battery thermal management systems. This study aims to develop a novel 3D topology-optimized cold plate design method based on Murray’s law to enhance the thermal management performance of lithium-ion batteries. To address the limitations of the conventional approach that directly stretches 2D topology optimization results to form 3D cold plates, a new design strategy involving secondary optimization based on Murray’s law is proposed to generate scientifically improved 3D cold plate structures. Numerical simulations are employed to systematically investigate the effects of cold plate type, inlet mass flow rate, coolant and ambient temperatures, and channel depth on the performance of the cold plates. The optimal channel depth for each hydraulic diameter is identified. The results indicate that, under identical conditions, the optimized cold plate (OP) achieves a heat transfer coefficient improvement of up to 122.12 % compared to the conventional stretched plate (SP), significantly enhancing battery temperature control. Moreover, the Performance Evaluation Criterion (PEC) of the OP increases by up to 55.36 % relative to the SP, and can be further improved by 34.84 % through channel depth optimization. The study also reveals that for each inlet hydraulic diameter, the optimal channel depth is 0.5 mm greater than that of the corresponding SP. This research provides a new optimization approach and methodology for the efficient design of cold plates in lithium-ion battery thermal management systems.
期刊介绍:
The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows.
Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.