Andrés Arrarás , Francisco J. Gaspar , Iñigo Jimenez-Ciga , Laura Portero
{"title":"Space-time parallel solvers for reaction-diffusion problems forming Turing patterns","authors":"Andrés Arrarás , Francisco J. Gaspar , Iñigo Jimenez-Ciga , Laura Portero","doi":"10.1016/j.apnum.2025.07.012","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, parallelization has become a strong tool to avoid the limits of classical sequential computing. In the present paper, we introduce four space-time parallel methods that combine the parareal algorithm with suitable splitting techniques for the numerical solution of reaction-diffusion problems. In particular, we consider a suitable partition of the elliptic operator that enables the parallelization in space by using splitting time integrators. Those schemes are then chosen as the propagators of the parareal algorithm, a well-known parallel-in-time method. Both first- and second-order time integrators are considered for this task. The resulting space-time parallel methods are applied to integrate reaction-diffusion problems that model Turing pattern formation. This phenomenon appears in chemical reactions due to diffusion-driven instabilities, and rules the pattern formation for animal coat markings. Such reaction-diffusion problems require fine space and time meshes for their numerical integration, so we illustrate the usefulness of the proposed methods by solving several models of practical interest.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"218 ","pages":"Pages 91-108"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001539","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, parallelization has become a strong tool to avoid the limits of classical sequential computing. In the present paper, we introduce four space-time parallel methods that combine the parareal algorithm with suitable splitting techniques for the numerical solution of reaction-diffusion problems. In particular, we consider a suitable partition of the elliptic operator that enables the parallelization in space by using splitting time integrators. Those schemes are then chosen as the propagators of the parareal algorithm, a well-known parallel-in-time method. Both first- and second-order time integrators are considered for this task. The resulting space-time parallel methods are applied to integrate reaction-diffusion problems that model Turing pattern formation. This phenomenon appears in chemical reactions due to diffusion-driven instabilities, and rules the pattern formation for animal coat markings. Such reaction-diffusion problems require fine space and time meshes for their numerical integration, so we illustrate the usefulness of the proposed methods by solving several models of practical interest.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.