Space-time parallel solvers for reaction-diffusion problems forming Turing patterns

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Andrés Arrarás , Francisco J. Gaspar , Iñigo Jimenez-Ciga , Laura Portero
{"title":"Space-time parallel solvers for reaction-diffusion problems forming Turing patterns","authors":"Andrés Arrarás ,&nbsp;Francisco J. Gaspar ,&nbsp;Iñigo Jimenez-Ciga ,&nbsp;Laura Portero","doi":"10.1016/j.apnum.2025.07.012","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, parallelization has become a strong tool to avoid the limits of classical sequential computing. In the present paper, we introduce four space-time parallel methods that combine the parareal algorithm with suitable splitting techniques for the numerical solution of reaction-diffusion problems. In particular, we consider a suitable partition of the elliptic operator that enables the parallelization in space by using splitting time integrators. Those schemes are then chosen as the propagators of the parareal algorithm, a well-known parallel-in-time method. Both first- and second-order time integrators are considered for this task. The resulting space-time parallel methods are applied to integrate reaction-diffusion problems that model Turing pattern formation. This phenomenon appears in chemical reactions due to diffusion-driven instabilities, and rules the pattern formation for animal coat markings. Such reaction-diffusion problems require fine space and time meshes for their numerical integration, so we illustrate the usefulness of the proposed methods by solving several models of practical interest.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"218 ","pages":"Pages 91-108"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001539","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, parallelization has become a strong tool to avoid the limits of classical sequential computing. In the present paper, we introduce four space-time parallel methods that combine the parareal algorithm with suitable splitting techniques for the numerical solution of reaction-diffusion problems. In particular, we consider a suitable partition of the elliptic operator that enables the parallelization in space by using splitting time integrators. Those schemes are then chosen as the propagators of the parareal algorithm, a well-known parallel-in-time method. Both first- and second-order time integrators are considered for this task. The resulting space-time parallel methods are applied to integrate reaction-diffusion problems that model Turing pattern formation. This phenomenon appears in chemical reactions due to diffusion-driven instabilities, and rules the pattern formation for animal coat markings. Such reaction-diffusion problems require fine space and time meshes for their numerical integration, so we illustrate the usefulness of the proposed methods by solving several models of practical interest.
形成图灵模式的反应扩散问题的时空并行求解器
近年来,并行化已成为避免经典顺序计算局限性的有力工具。本文介绍了将平行算法与适当的分裂技术相结合的四种时空并行方法,用于求解反应扩散问题的数值解。特别地,我们考虑了一种合适的椭圆算子的划分,它可以利用分裂时间积分器实现空间上的并行化。然后选择这些方案作为准面算法的传播算子,这是一种著名的实时并行方法。该任务考虑了一阶和二阶时间积分器。所得到的时空并行方法应用于图灵模式形成的反应扩散问题的集成。这种现象出现在由扩散驱动的不稳定性引起的化学反应中,并支配着动物皮毛斑纹的图案形成。这样的反应扩散问题需要精细的空间和时间网格来进行数值积分,因此我们通过解决几个实际感兴趣的模型来说明所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信