Acoustic eigenvalue analysis by singular boundary method with the block Sakurai–Sugiura method

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Weiwei Li, Chenchen Yang
{"title":"Acoustic eigenvalue analysis by singular boundary method with the block Sakurai–Sugiura method","authors":"Weiwei Li,&nbsp;Chenchen Yang","doi":"10.1016/j.aml.2025.109702","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel numerical solver for the nonlinear eigenvalue analysis of acoustic problems utilizing the singular boundary method (SBM). The proposed methodology integrates a contour integral technique referred as the block Sakurai-Sugiura (SS) method to effectively address the frequency-dependent nonlinearity inherent in SBM formulations. The Burton–Miller formulation is utilized to identify the fictitious eigenvalues associated with multiply-connected domains. Numerical experiments indicate that the developed eigensolver attains a high level of accuracy in eigenvalue extraction, with comparative analyses against analytical solutions affirming both its computational efficiency and robustness.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109702"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002526","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel numerical solver for the nonlinear eigenvalue analysis of acoustic problems utilizing the singular boundary method (SBM). The proposed methodology integrates a contour integral technique referred as the block Sakurai-Sugiura (SS) method to effectively address the frequency-dependent nonlinearity inherent in SBM formulations. The Burton–Miller formulation is utilized to identify the fictitious eigenvalues associated with multiply-connected domains. Numerical experiments indicate that the developed eigensolver attains a high level of accuracy in eigenvalue extraction, with comparative analyses against analytical solutions affirming both its computational efficiency and robustness.
基于块Sakurai-Sugiura方法的奇异边界法声学特征值分析
本文提出了一种基于奇异边界法的声学问题非线性特征值分析数值求解方法。所提出的方法集成了一种称为块Sakurai-Sugiura (SS)方法的轮廓积分技术,以有效地解决SBM公式中固有的频率相关非线性。利用伯顿-米勒公式来识别与多连通域相关的虚构特征值。数值实验表明,所提出的特征解在特征值提取方面具有较高的精度,并与解析解进行了比较分析,证明了该方法的计算效率和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信