{"title":"Active Microfluidic Platforms for Particle Separation and Integrated Sensing Applications.","authors":"Tianlong Zhang,Tianyuan Zhou,Qi Cui,Xiaoming Feng,Shilun Feng,Ming Li,Yang Yang,Yoichiroh Hosokawa,Guizhong Tian,Amy Q Shen,Yaxiaer Yalikun","doi":"10.1021/acssensors.5c01896","DOIUrl":null,"url":null,"abstract":"The active manipulation and separation of particles in microfluidic systems using externally applied forces, such as acoustic, electric, magnetic, and optical fields, have transformed our capacity to detect pathogens, biomarkers, and environmental analytes with high precision and adaptability. These active microfluidic approaches offer enhanced control over particle trajectories, tunable separation thresholds, and compatibility with diverse sample types, making them highly promising for integration with downstream sensing platforms. This Perspective outlines recent advances in active microfluidic separation strategies and explores their synergies with biochemical assays, such as lateral flow tests, electrochemical sensors, and next-generation sequencing. We highlight the unique advantages and limitations of each technique and provide a comparative analysis across performance metrics such as throughput, specificity, and scalability. We also identify key challenges, such as system integration, throughput constraints, and label dependency, and propose future research directions to accelerate the deployment of these technologies in clinical, environmental, and point-of-care settings.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"24 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.5c01896","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The active manipulation and separation of particles in microfluidic systems using externally applied forces, such as acoustic, electric, magnetic, and optical fields, have transformed our capacity to detect pathogens, biomarkers, and environmental analytes with high precision and adaptability. These active microfluidic approaches offer enhanced control over particle trajectories, tunable separation thresholds, and compatibility with diverse sample types, making them highly promising for integration with downstream sensing platforms. This Perspective outlines recent advances in active microfluidic separation strategies and explores their synergies with biochemical assays, such as lateral flow tests, electrochemical sensors, and next-generation sequencing. We highlight the unique advantages and limitations of each technique and provide a comparative analysis across performance metrics such as throughput, specificity, and scalability. We also identify key challenges, such as system integration, throughput constraints, and label dependency, and propose future research directions to accelerate the deployment of these technologies in clinical, environmental, and point-of-care settings.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.