Minghui Jia , Youchao Wang , Jin He , Shan-Ho Chou , Dehua Luo , Linchuan Fang , Jingtao Hou , Yuke Fan , Wenjun Zhang , Hansong Chen , Dejian Zhou , Yurong Liu , Youzhi Feng , Luuk Koopal , Wenfeng Tan
{"title":"Soil aggregates stability is evidently enhanced by super-binding of the N-terminal disordered tail of glomalin to soil minerals","authors":"Minghui Jia , Youchao Wang , Jin He , Shan-Ho Chou , Dehua Luo , Linchuan Fang , Jingtao Hou , Yuke Fan , Wenjun Zhang , Hansong Chen , Dejian Zhou , Yurong Liu , Youzhi Feng , Luuk Koopal , Wenfeng Tan","doi":"10.1016/j.soilbio.2025.109908","DOIUrl":null,"url":null,"abstract":"<div><div>Glomalin-related soil protein (GRSP) extracted from soil is considered crucial for the formation and stability of soil aggregates. However, due to limitations in extraction purity and interference from co-extracted products, the actual contribution of pure glomalin produced by arbuscular mycorrhizal fungi (AMF) to soil structure improvement and its specific mechanism of action remain elusive. Here, genetic engineering and cryo-electron microscopy (cryo-EM) are introduced to obtain purified glomalin and to determine its homo-tetradecamer structure. This allowed investigations of the effect of pure glomalin on soil aggregate stability and the specific glomalin-mineral interaction mechanism. The results showed that addition of glomalin significantly enhanced the formation of soil water-stable aggregates and soil macroaggregates. This enhancement was primarily attributed to the strong binding of glomalin to soil minerals, as evidenced by single molecule force spectroscopy (SMFS) and attenuated total reflectance-Fourier transform infrared spectrum (ATR-FTIR) experiments. Glomalin structural analysis, comparison of its amino sequence alignment with that of <em>Escherichia coli</em> heat shock protein 60 (<em>E. coli</em> Hsp60) and mineral binding experiments with several glomalin related mutants highlighted that the N-terminus disordered tail of glomalin composed of ∼39 amino acids were crucial for the glomalin super binding ability. These findings advance the understanding of glomalin's intrinsic mechanism for improving soil structure and open the opportunity for mass production of this ecologically important protein as a soil amendment.</div></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"210 ","pages":"Article 109908"},"PeriodicalIF":10.3000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038071725002020","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Glomalin-related soil protein (GRSP) extracted from soil is considered crucial for the formation and stability of soil aggregates. However, due to limitations in extraction purity and interference from co-extracted products, the actual contribution of pure glomalin produced by arbuscular mycorrhizal fungi (AMF) to soil structure improvement and its specific mechanism of action remain elusive. Here, genetic engineering and cryo-electron microscopy (cryo-EM) are introduced to obtain purified glomalin and to determine its homo-tetradecamer structure. This allowed investigations of the effect of pure glomalin on soil aggregate stability and the specific glomalin-mineral interaction mechanism. The results showed that addition of glomalin significantly enhanced the formation of soil water-stable aggregates and soil macroaggregates. This enhancement was primarily attributed to the strong binding of glomalin to soil minerals, as evidenced by single molecule force spectroscopy (SMFS) and attenuated total reflectance-Fourier transform infrared spectrum (ATR-FTIR) experiments. Glomalin structural analysis, comparison of its amino sequence alignment with that of Escherichia coli heat shock protein 60 (E. coli Hsp60) and mineral binding experiments with several glomalin related mutants highlighted that the N-terminus disordered tail of glomalin composed of ∼39 amino acids were crucial for the glomalin super binding ability. These findings advance the understanding of glomalin's intrinsic mechanism for improving soil structure and open the opportunity for mass production of this ecologically important protein as a soil amendment.
期刊介绍:
Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.