Daniel J Clements,Karen Stamieszkin,Daniele Bianchi,Leocadio Blanco-Bercial,Nicholas R Record,Rocio B Rodriguez-Perez,Amy E Maas
{"title":"Active Carbon Transport by Diel Vertical Migrating Zooplankton: Calculated and Modeled, but Never Measured.","authors":"Daniel J Clements,Karen Stamieszkin,Daniele Bianchi,Leocadio Blanco-Bercial,Nicholas R Record,Rocio B Rodriguez-Perez,Amy E Maas","doi":"10.1146/annurev-marine-121422-015330","DOIUrl":null,"url":null,"abstract":"Zooplankton diel vertical migration (DVM) is a globally ubiquitous phenomenon and a critical component of the ocean's biological pump. During DVM, zooplankton metabolism leads to carbon and nutrient export to mesopelagic depths, where carbon can be sequestered for decades to millennia, while also introducing labile, energy-rich food sources to midwater ecosystems. Three pervasive metabolic pathways allow zooplankton to sequester carbon: fecal pellet egestion, dissolved organic matter excretion, and respiration. Additionally, there are several less well-parameterized sources of DVM transport associated with growth, feeding, reproduction, and mortality. These processes are challenging to measure in situ and difficult to extrapolate from laboratory experiments, making them some of the most poorly constrained factors in assessments and models of the biological pump. In this review, we evaluate and compare observational and modeling approaches to estimate zooplankton DVM and the resulting active carbon flux, highlighting major discrepancies and proposing directions for future research.","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":"37 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Marine Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-marine-121422-015330","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Zooplankton diel vertical migration (DVM) is a globally ubiquitous phenomenon and a critical component of the ocean's biological pump. During DVM, zooplankton metabolism leads to carbon and nutrient export to mesopelagic depths, where carbon can be sequestered for decades to millennia, while also introducing labile, energy-rich food sources to midwater ecosystems. Three pervasive metabolic pathways allow zooplankton to sequester carbon: fecal pellet egestion, dissolved organic matter excretion, and respiration. Additionally, there are several less well-parameterized sources of DVM transport associated with growth, feeding, reproduction, and mortality. These processes are challenging to measure in situ and difficult to extrapolate from laboratory experiments, making them some of the most poorly constrained factors in assessments and models of the biological pump. In this review, we evaluate and compare observational and modeling approaches to estimate zooplankton DVM and the resulting active carbon flux, highlighting major discrepancies and proposing directions for future research.
期刊介绍:
The Annual Review of Marine Science, published since 2009, offers a comprehensive overview of the field. It covers various disciplines, including coastal and blue water oceanography (biological, chemical, geological, and physical), ecology, conservation, and technological advancements related to the marine environment. The journal's transition from gated to open access through Annual Reviews' Subscribe to Open program ensures that all articles are available under a CC BY license, promoting wider accessibility and dissemination of knowledge.