Michaël Deghelt, Seung-Hyun Cho, Jiawei Sun, Sander K. Govers, Arne Janssens, Alix Vincent Dachsbeck, Han K. Remaut, Kerwyn Casey Huang, Jean-François Collet
{"title":"Peptidoglycan–outer membrane attachment generates periplasmic pressure to prevent lysis in Gram-negative bacteria","authors":"Michaël Deghelt, Seung-Hyun Cho, Jiawei Sun, Sander K. Govers, Arne Janssens, Alix Vincent Dachsbeck, Han K. Remaut, Kerwyn Casey Huang, Jean-François Collet","doi":"10.1038/s41564-025-02058-9","DOIUrl":null,"url":null,"abstract":"<p>Bacteria are subject to a substantial concentration differential of osmolytes between the interior and exterior of the cell, resulting in turgor pressure. Failure to mechanically balance this turgor pressure causes cells to burst. Here, using microfluidics, imaging, biochemistry and mathematical modelling, we analysed how <i>Escherichia coli</i> cells with structural mutations in the envelope respond to hypoosmotic shocks. We show that the peptidoglycan cell wall forms a mechanical unit with the outer membrane that limits periplasmic volume increase under hypoosmotic shock, allowing osmotic pressure build-up in the periplasm. In turn, this periplasmic pressure balances cytoplasmic turgor across the inner membrane, preventing cell lysis and death. Thus, while the peptidoglycan layer is necessary, it is not sufficient to maintain turgor and protect cells from lysis. We propose a model in which the entire cell envelope, including the periplasm, collectively enables Gram-negative bacteria to overcome osmotic challenges.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"23 1","pages":""},"PeriodicalIF":19.4000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-025-02058-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteria are subject to a substantial concentration differential of osmolytes between the interior and exterior of the cell, resulting in turgor pressure. Failure to mechanically balance this turgor pressure causes cells to burst. Here, using microfluidics, imaging, biochemistry and mathematical modelling, we analysed how Escherichia coli cells with structural mutations in the envelope respond to hypoosmotic shocks. We show that the peptidoglycan cell wall forms a mechanical unit with the outer membrane that limits periplasmic volume increase under hypoosmotic shock, allowing osmotic pressure build-up in the periplasm. In turn, this periplasmic pressure balances cytoplasmic turgor across the inner membrane, preventing cell lysis and death. Thus, while the peptidoglycan layer is necessary, it is not sufficient to maintain turgor and protect cells from lysis. We propose a model in which the entire cell envelope, including the periplasm, collectively enables Gram-negative bacteria to overcome osmotic challenges.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.