Nitrogen heterocyclic covalent organic frameworks for efficient H2O2 photosynthesis and in situ water treatment

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhong Chen, Hao Weng, Chengcheng Chu, Ducheng Yao, Qiuju Li, Chen Zhang, Shun Mao
{"title":"Nitrogen heterocyclic covalent organic frameworks for efficient H2O2 photosynthesis and in situ water treatment","authors":"Zhong Chen, Hao Weng, Chengcheng Chu, Ducheng Yao, Qiuju Li, Chen Zhang, Shun Mao","doi":"10.1038/s41467-025-62371-z","DOIUrl":null,"url":null,"abstract":"<p>Nitrogen heterocyclic covalent organic frameworks offer great potential for H<sub>2</sub>O<sub>2</sub> production due to their unique optical and electrical properties. Herein, we design four photocatalysts with varying nitrogen atom configurations to tune their electronic and energy-band structures. Among them, the covalent organic frameworks with pyrimidine achieves an efficient H<sub>2</sub>O<sub>2</sub> production rate of 17014 μmol g<sup>−1</sup> h<sup>−1</sup> and a solar-to-chemical conversion efficiency of 1.84% in pure water without sacrificial agent or oxygen aeration. The theoretical calculation and experimental study confirm that it owns superior photoelectrochemical properties, oxygen reduction reaction activity, and the lowest reaction potential barrier, enabling dual channel H<sub>2</sub>O<sub>2</sub> production via 2e<sup>−</sup> oxygen reduction reaction and 4e<sup>−</sup> water oxidation reaction. To explore the application potential of the photocatalytic system, a panel reactor (20 × 20 cm) under natural sunlight demonstrates continuous H<sub>2</sub>O<sub>2</sub> generation for antibiotic degradation and long-lasting water disinfection. This work presents an advanced photocatalytic H<sub>2</sub>O<sub>2</sub> synthesis system with high efficiency and environmental remediation potential.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"18 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62371-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen heterocyclic covalent organic frameworks offer great potential for H2O2 production due to their unique optical and electrical properties. Herein, we design four photocatalysts with varying nitrogen atom configurations to tune their electronic and energy-band structures. Among them, the covalent organic frameworks with pyrimidine achieves an efficient H2O2 production rate of 17014 μmol g−1 h−1 and a solar-to-chemical conversion efficiency of 1.84% in pure water without sacrificial agent or oxygen aeration. The theoretical calculation and experimental study confirm that it owns superior photoelectrochemical properties, oxygen reduction reaction activity, and the lowest reaction potential barrier, enabling dual channel H2O2 production via 2e oxygen reduction reaction and 4e water oxidation reaction. To explore the application potential of the photocatalytic system, a panel reactor (20 × 20 cm) under natural sunlight demonstrates continuous H2O2 generation for antibiotic degradation and long-lasting water disinfection. This work presents an advanced photocatalytic H2O2 synthesis system with high efficiency and environmental remediation potential.

Abstract Image

氮杂环共价有机框架用于高效H2O2光合作用和原位水处理
氮杂环共价有机框架由于其独特的光学和电学性质,为生产H2O2提供了巨大的潜力。在此,我们设计了四种具有不同氮原子构型的光催化剂,以调整其电子和能带结构。其中,含嘧啶共价有机框架在纯水条件下,H2O2产率可达17014 μmol g−1 h−1,光化学转化效率为1.84%,无需牺牲剂或曝氧。理论计算和实验研究证实,该材料具有优异的光电化学性能、氧还原反应活性和最低的反应势垒,能够通过2e−氧还原反应和4e−水氧化反应双通道生成H2O2。为了探索光催化系统的应用潜力,在自然光照射下,面板反应器(20 × 20 cm)连续生成H2O2,用于抗生素降解和持久的水消毒。本文介绍了一种新型的光催化H2O2合成系统,该系统具有高效和环境修复潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信