Bridging small molecule calculations and predictable polymer mechanical properties

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Luping Wang, Kaiqiang Zhang, Kaiyang Hou, Yuguo Xia, Xu Wang
{"title":"Bridging small molecule calculations and predictable polymer mechanical properties","authors":"Luping Wang, Kaiqiang Zhang, Kaiyang Hou, Yuguo Xia, Xu Wang","doi":"10.1038/s41467-025-62449-8","DOIUrl":null,"url":null,"abstract":"<p>For decades, the prediction of polymer material properties using macromolecular computational methods has faced significant challenges due to the requirement for extensive databases, inefficiencies in computation time, and limitations in predictive accuracy. Herein we discover that the calculated binding energy of supramolecular fragments correlates linearly with the mechanical properties of polyurethane elastomers. This finding suggests that small molecule calculations may offer a more efficient way to predict polymer performance. Experimental validation supports this insight, with the top-performing elastomer exhibiting a toughness of 1.1 GJ m<sup>−3</sup>, along with high mechanical strength, transparency, scalability, self-healing capability, and recyclability. Furthermore, this material presents a performance-to-cost ratio double that of commercially available high-performance elastomers, unlocking potential for broader applications where current materials may fall short.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"11 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62449-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

For decades, the prediction of polymer material properties using macromolecular computational methods has faced significant challenges due to the requirement for extensive databases, inefficiencies in computation time, and limitations in predictive accuracy. Herein we discover that the calculated binding energy of supramolecular fragments correlates linearly with the mechanical properties of polyurethane elastomers. This finding suggests that small molecule calculations may offer a more efficient way to predict polymer performance. Experimental validation supports this insight, with the top-performing elastomer exhibiting a toughness of 1.1 GJ m−3, along with high mechanical strength, transparency, scalability, self-healing capability, and recyclability. Furthermore, this material presents a performance-to-cost ratio double that of commercially available high-performance elastomers, unlocking potential for broader applications where current materials may fall short.

Abstract Image

桥接小分子计算和可预测的聚合物力学性能
几十年来,由于需要庞大的数据库、计算时间低效率和预测精度的限制,使用大分子计算方法预测聚合物材料的性能面临着巨大的挑战。研究发现,计算得到的超分子碎片结合能与聚氨酯弹性体的力学性能呈线性相关。这一发现表明,小分子计算可能提供一种更有效的方法来预测聚合物的性能。实验验证支持了这一观点,性能最好的弹性体表现出1.1 GJ m−3的韧性,同时具有高机械强度、透明度、可扩展性、自修复能力和可回收性。此外,这种材料的性能成本比是市售高性能弹性体的两倍,在现有材料可能不足的地方释放了更广泛应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信