Luping Wang, Kaiqiang Zhang, Kaiyang Hou, Yuguo Xia, Xu Wang
{"title":"Bridging small molecule calculations and predictable polymer mechanical properties","authors":"Luping Wang, Kaiqiang Zhang, Kaiyang Hou, Yuguo Xia, Xu Wang","doi":"10.1038/s41467-025-62449-8","DOIUrl":null,"url":null,"abstract":"<p>For decades, the prediction of polymer material properties using macromolecular computational methods has faced significant challenges due to the requirement for extensive databases, inefficiencies in computation time, and limitations in predictive accuracy. Herein we discover that the calculated binding energy of supramolecular fragments correlates linearly with the mechanical properties of polyurethane elastomers. This finding suggests that small molecule calculations may offer a more efficient way to predict polymer performance. Experimental validation supports this insight, with the top-performing elastomer exhibiting a toughness of 1.1 GJ m<sup>−3</sup>, along with high mechanical strength, transparency, scalability, self-healing capability, and recyclability. Furthermore, this material presents a performance-to-cost ratio double that of commercially available high-performance elastomers, unlocking potential for broader applications where current materials may fall short.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"11 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62449-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
For decades, the prediction of polymer material properties using macromolecular computational methods has faced significant challenges due to the requirement for extensive databases, inefficiencies in computation time, and limitations in predictive accuracy. Herein we discover that the calculated binding energy of supramolecular fragments correlates linearly with the mechanical properties of polyurethane elastomers. This finding suggests that small molecule calculations may offer a more efficient way to predict polymer performance. Experimental validation supports this insight, with the top-performing elastomer exhibiting a toughness of 1.1 GJ m−3, along with high mechanical strength, transparency, scalability, self-healing capability, and recyclability. Furthermore, this material presents a performance-to-cost ratio double that of commercially available high-performance elastomers, unlocking potential for broader applications where current materials may fall short.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.