Xiaoyuan Lin, Zhou Sha, Chunlin Zhang, Julia M. Adler, Ricardo Martin Vidal, Christine Langner, Beibei Fu, Yan Xiong, Meng Tan, Chen Jiang, Hao Zeng, Xiaokai Zhang, Qian Li, Jingmin Yan, Xiaoxue Lu, Shiwei Wang, Xuhu Mao, Dusan Kunec, Jakob Trimpert, Haibo Wu, Quanming Zou, Zhenglin Zhu
{"title":"A single mutation may contribute to accelerated evolution of SARS-CoV-2 toward Omicron","authors":"Xiaoyuan Lin, Zhou Sha, Chunlin Zhang, Julia M. Adler, Ricardo Martin Vidal, Christine Langner, Beibei Fu, Yan Xiong, Meng Tan, Chen Jiang, Hao Zeng, Xiaokai Zhang, Qian Li, Jingmin Yan, Xiaoxue Lu, Shiwei Wang, Xuhu Mao, Dusan Kunec, Jakob Trimpert, Haibo Wu, Quanming Zou, Zhenglin Zhu","doi":"10.1038/s41467-025-62300-0","DOIUrl":null,"url":null,"abstract":"<p>How SARS-CoV-2 Omicron evolved remains obscure. T492I, an Omicron-specific mutation encountered in SARS-CoV-2 nonstructural protein 4 (NSP4), enhances viral replication and alters nonstructural protein cleavage, inferring potentials to drive evolution. Through evolve-and-resequence experiments of SARS-CoV-2 wild-type (hCoV-19/USA/WA-CDC-02982585-001/2020, A) and Delta strains (B.1.617) with or without T492I, this study demonstrates that the NSP4 mutation T492I confers accelerated phenotypic adaption and a predisposition to the emergence of SARS-CoV-2 Omicron-like variants. The T492I-driven evolution results in accelerated enhancement in viral replication, infectivity, immune evasion capacity, receptor-binding affinity and potential for cross-species transmission. Aside from elevated mutation rates and impact on deaminases, positive epistasis between T492I and adaptive mutations could potentially mechanistically facilitate the shifts in mutation spectra and indirectly determines the Omicron-predisposing evolution. These suggest a potentially important role of the driver mutation T492I in the evolution of SARS-CoV-2 Omicron variants. Our findings highlight the existence and importance of mutation-driven predisposition in viral evolution.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"36 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62300-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
How SARS-CoV-2 Omicron evolved remains obscure. T492I, an Omicron-specific mutation encountered in SARS-CoV-2 nonstructural protein 4 (NSP4), enhances viral replication and alters nonstructural protein cleavage, inferring potentials to drive evolution. Through evolve-and-resequence experiments of SARS-CoV-2 wild-type (hCoV-19/USA/WA-CDC-02982585-001/2020, A) and Delta strains (B.1.617) with or without T492I, this study demonstrates that the NSP4 mutation T492I confers accelerated phenotypic adaption and a predisposition to the emergence of SARS-CoV-2 Omicron-like variants. The T492I-driven evolution results in accelerated enhancement in viral replication, infectivity, immune evasion capacity, receptor-binding affinity and potential for cross-species transmission. Aside from elevated mutation rates and impact on deaminases, positive epistasis between T492I and adaptive mutations could potentially mechanistically facilitate the shifts in mutation spectra and indirectly determines the Omicron-predisposing evolution. These suggest a potentially important role of the driver mutation T492I in the evolution of SARS-CoV-2 Omicron variants. Our findings highlight the existence and importance of mutation-driven predisposition in viral evolution.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.