Amitava Banerjee, David J Pattinson, Cornelia L Wincek, Paul Bunk, Armend Axhemi, Sarah R Chapin, Saket Navlakha, Hannah V Meyer
{"title":"T cell receptor cross-reactivity prediction improved by a comprehensive mutational scan database.","authors":"Amitava Banerjee, David J Pattinson, Cornelia L Wincek, Paul Bunk, Armend Axhemi, Sarah R Chapin, Saket Navlakha, Hannah V Meyer","doi":"10.1016/j.cels.2025.101345","DOIUrl":null,"url":null,"abstract":"<p><p>Comprehensively mapping all targets of a T cell receptor (TCR) is important for predicting pathogenic escape and off-target effects of TCR therapies. However, this mapping has been challenging due to lack of unbiased benchmarking datasets and computational methods sensitive to small-peptide mutations. To address this, we curated the benchmark for activation of T cells with cross-reactive avidity for epitopes (BATCAVE) database, encompassing near-complete single-amino-acid mutational assays, centered around 25 immunogenic epitopes, across both major histocompatibility complex classes, against 151 human and mouse TCRs, containing 22,000+ TCR-peptide pairs in total. We then introduce Bayesian inference of activation of TCR by mutant antigens (BATMAN), an interpretable Bayesian model, trained on BATCAVE, for predicting the peptides that activate a TCR, and an active learning extension, which efficiently maps targets of a novel TCR by selecting a few peptides to assay. We show that BATMAN outperforms existing methods, reveals structural and biochemical predictors of TCR-peptide interactions, and can predict polyclonal T cell responses and TCR targets with high sequence dissimilarity. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101345"},"PeriodicalIF":7.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Comprehensively mapping all targets of a T cell receptor (TCR) is important for predicting pathogenic escape and off-target effects of TCR therapies. However, this mapping has been challenging due to lack of unbiased benchmarking datasets and computational methods sensitive to small-peptide mutations. To address this, we curated the benchmark for activation of T cells with cross-reactive avidity for epitopes (BATCAVE) database, encompassing near-complete single-amino-acid mutational assays, centered around 25 immunogenic epitopes, across both major histocompatibility complex classes, against 151 human and mouse TCRs, containing 22,000+ TCR-peptide pairs in total. We then introduce Bayesian inference of activation of TCR by mutant antigens (BATMAN), an interpretable Bayesian model, trained on BATCAVE, for predicting the peptides that activate a TCR, and an active learning extension, which efficiently maps targets of a novel TCR by selecting a few peptides to assay. We show that BATMAN outperforms existing methods, reveals structural and biochemical predictors of TCR-peptide interactions, and can predict polyclonal T cell responses and TCR targets with high sequence dissimilarity. A record of this paper's transparent peer review process is included in the supplemental information.