Genetic analyses of eight complex diseases using predicted continuous representations of disease.

IF 4.5 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-08-18 Epub Date: 2025-07-25 DOI:10.1016/j.crmeth.2025.101115
Robert Chen, Ghislain Rocheleau, Ben Omega Petrazzini, Iain S Forrest, Joshua K Park, Áine Duffy, Ha My T Vy, Daniel Jordan, Ron Do
{"title":"Genetic analyses of eight complex diseases using predicted continuous representations of disease.","authors":"Robert Chen, Ghislain Rocheleau, Ben Omega Petrazzini, Iain S Forrest, Joshua K Park, Áine Duffy, Ha My T Vy, Daniel Jordan, Ron Do","doi":"10.1016/j.crmeth.2025.101115","DOIUrl":null,"url":null,"abstract":"<p><p>We evaluated whether predicted continuous disease representations could enhance genetic discovery beyond case-control genome-wide association study (GWAS) phenotypes across eight complex diseases in up to 485,448 UK Biobank participants. Predicted phenotypes had high genetic correlations with case-control phenotypes (median r<sub>g</sub> = 0.66) but identified more independent associations (median 306 versus 125). While some predicted phenotype associations were spurious, multi-trait analysis of GWAS-boosted case-control phenotypes identified a median of 46 additional variants per disease, of which a median of 73% replicated in FinnGen, 37% reached genome-wide significance in a UK Biobank/FinnGen meta-analysis, and 45% had supporting evidence. Predicted phenotypes also identified 14 genes targeted by phase I-IV drugs not identified by case-control phenotypes, and combined polygenic risk scores (PRSs) using both phenotypes improved prediction performance, with a median 37% increase in Nagelkerke's R<sup>2</sup>. Predicted phenotypes represent composite biomarkers complementing case-control approaches in genetic discovery, drug target prioritization, and risk prediction, though efficacy varies across diseases.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101115"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461582/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We evaluated whether predicted continuous disease representations could enhance genetic discovery beyond case-control genome-wide association study (GWAS) phenotypes across eight complex diseases in up to 485,448 UK Biobank participants. Predicted phenotypes had high genetic correlations with case-control phenotypes (median rg = 0.66) but identified more independent associations (median 306 versus 125). While some predicted phenotype associations were spurious, multi-trait analysis of GWAS-boosted case-control phenotypes identified a median of 46 additional variants per disease, of which a median of 73% replicated in FinnGen, 37% reached genome-wide significance in a UK Biobank/FinnGen meta-analysis, and 45% had supporting evidence. Predicted phenotypes also identified 14 genes targeted by phase I-IV drugs not identified by case-control phenotypes, and combined polygenic risk scores (PRSs) using both phenotypes improved prediction performance, with a median 37% increase in Nagelkerke's R2. Predicted phenotypes represent composite biomarkers complementing case-control approaches in genetic discovery, drug target prioritization, and risk prediction, though efficacy varies across diseases.

使用疾病预测连续表示的八种复杂疾病的遗传分析。
在485,448名英国生物银行参与者中,我们评估了预测的连续疾病表征是否可以在病例对照的全基因组关联研究(GWAS)表型之外加强基因发现,涉及8种复杂疾病。预测表型与病例对照表型具有很高的遗传相关性(中位rg = 0.66),但鉴定出更多独立的关联(中位rg为306比125)。虽然一些预测的表型关联是虚假的,但对gwas促进的病例对照表型的多性状分析发现,每种疾病的中位数额外变异为46个,其中在FinnGen中复制的中位数为73%,在UK Biobank/FinnGen荟萃分析中达到全基因组显著性的37%,45%有支持证据。预测表型还确定了14个I-IV期药物靶向的基因,而病例对照表型未确定,使用两种表型的联合多基因风险评分(PRSs)提高了预测性能,Nagelkerke的R2中位数提高了37%。预测表型代表了在基因发现、药物靶点优先排序和风险预测方面补充病例对照方法的复合生物标志物,尽管疗效因疾病而异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信