{"title":"Two forecasting model selection methods based on time series image feature augmentation.","authors":"Wentao Jiang, Quan Wang, Hongbo Li","doi":"10.1038/s41598-025-10072-4","DOIUrl":null,"url":null,"abstract":"<p><p>Forecasting and early warning of agricultural product prices is a crucial task in stream data event analysis and agricultural data mining. Existing methods for forecasting agricultural product prices suffer from inefficient feature engineering and challenges in handling imbalanced sample data. To address these issues, we propose a novel predictive model selection approach based on time series image encoding. Specifically, we utilize Gramian Angular Fields (GAF), Markov Transition Fields (MTF), and Recurrence Plots (RP) to transform time series data into image representations. We then introduce an Information Fusion Feature Augmentation (IFFA) method to effectively combine these time series images, ensuring that all relevant event information is preserved. The combined time series images (TSCI) are subsequently fed into a Convolutional Neural Network (CNN) classifier for model selection. Furthermore, to accommodate the unique characteristics of the data, we incorporate Transfer Learning (TL) and S-Folder Cross Validation (S-FCV) to optimize the model selection process, thereby mitigating overfitting due to limited or imbalanced data. Experimental results demonstrate that the proposed IFFA-TSCI-CNN-SFCV method outperforms existing approaches in terms of both efficiency and accuracy.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"27217"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-10072-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Forecasting and early warning of agricultural product prices is a crucial task in stream data event analysis and agricultural data mining. Existing methods for forecasting agricultural product prices suffer from inefficient feature engineering and challenges in handling imbalanced sample data. To address these issues, we propose a novel predictive model selection approach based on time series image encoding. Specifically, we utilize Gramian Angular Fields (GAF), Markov Transition Fields (MTF), and Recurrence Plots (RP) to transform time series data into image representations. We then introduce an Information Fusion Feature Augmentation (IFFA) method to effectively combine these time series images, ensuring that all relevant event information is preserved. The combined time series images (TSCI) are subsequently fed into a Convolutional Neural Network (CNN) classifier for model selection. Furthermore, to accommodate the unique characteristics of the data, we incorporate Transfer Learning (TL) and S-Folder Cross Validation (S-FCV) to optimize the model selection process, thereby mitigating overfitting due to limited or imbalanced data. Experimental results demonstrate that the proposed IFFA-TSCI-CNN-SFCV method outperforms existing approaches in terms of both efficiency and accuracy.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.