Fangfang Wu, Zhihui Liu, Jing Huang, Yuan Gao, Lan Yang, Fuliang Du
{"title":"Interaction and regulatory expression of Polycomb and NuRD complexes in mouse embryonic stem cell under PKC inhibition.","authors":"Fangfang Wu, Zhihui Liu, Jing Huang, Yuan Gao, Lan Yang, Fuliang Du","doi":"10.1038/s41598-025-12427-3","DOIUrl":null,"url":null,"abstract":"<p><p>Polycomb repressive complexes (PRC) and nucleosome remodeling and deacetylase (NuRD) complex are crucial for regulating the expression of pluripotent and developmental genes and maintaining the characteristics of mouse embryonic stem cells (mESCs). However, the interplay between the Polycomb and NuRD complexes in mESCs, particularly under protein kinase C (PKC) inhibition, remains to be elucidated. We knocked down Polycomb complexes components Ezh2, Ring1b, and Cbx7 via short hairpin RNA interference and observed significant reductions in most NuRD complex components, especially Mbd3, Mta1, Rbbp4, and Rbbp7. Similarly, Ezh2 overexpression increased the levels of these major NuRD complex components. Further, Mbd3 knockdown significantly reduced the expression of PRC1 major components Ring1b, Rybp, and Cbx7 and PRC2 major components Ezh2, Suz12, and Eed, but its overexpression had no significant effect on their levels. These results indicate that PKC inhibition provides a suitable environment for the expression of PRC components. Altogether, our study demonstrates that mESCs exhibit mutual gene regulation of Polycomb and NuRD complexes under PKC inhibition that maintains pluripotency and self-renewal abilities and regulates the plasticity of mESCs to balance between pluripotency and cell fate determination.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"27204"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297370/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-12427-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Polycomb repressive complexes (PRC) and nucleosome remodeling and deacetylase (NuRD) complex are crucial for regulating the expression of pluripotent and developmental genes and maintaining the characteristics of mouse embryonic stem cells (mESCs). However, the interplay between the Polycomb and NuRD complexes in mESCs, particularly under protein kinase C (PKC) inhibition, remains to be elucidated. We knocked down Polycomb complexes components Ezh2, Ring1b, and Cbx7 via short hairpin RNA interference and observed significant reductions in most NuRD complex components, especially Mbd3, Mta1, Rbbp4, and Rbbp7. Similarly, Ezh2 overexpression increased the levels of these major NuRD complex components. Further, Mbd3 knockdown significantly reduced the expression of PRC1 major components Ring1b, Rybp, and Cbx7 and PRC2 major components Ezh2, Suz12, and Eed, but its overexpression had no significant effect on their levels. These results indicate that PKC inhibition provides a suitable environment for the expression of PRC components. Altogether, our study demonstrates that mESCs exhibit mutual gene regulation of Polycomb and NuRD complexes under PKC inhibition that maintains pluripotency and self-renewal abilities and regulates the plasticity of mESCs to balance between pluripotency and cell fate determination.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.