Jianbao Wang, Yipeng Liu, Yuhan Ma, Yuqi Feng, Libo Lin, An Ping, Feiyan Tian, Xiaotong Zhang, Avery J L Berman, Saskia Bollmann, Jonathan R Polimeni, Anna Wang Roe
{"title":"In vivo 7 Tesla MRI of non-human primate intracortical microvascular architecture.","authors":"Jianbao Wang, Yipeng Liu, Yuhan Ma, Yuqi Feng, Libo Lin, An Ping, Feiyan Tian, Xiaotong Zhang, Avery J L Berman, Saskia Bollmann, Jonathan R Polimeni, Anna Wang Roe","doi":"10.1016/j.neuron.2025.05.028","DOIUrl":null,"url":null,"abstract":"<p><p>Intracortical arterioles are key locations for blood flow regulation and oxygen supply in the brain and are critical to brain health and disease. However, imaging such small (<100-μm-sized) vessels in humans is challenging. Here, using non-human primates as a model, we developed a capability for imaging microvasculature in vivo with a clinical 7 T MRI scanner. Using simulations, we identified parameters for imaging intracortical vessels with slow flow and combined this with high-resolution imaging (64 × 64 μm<sup>2</sup> in-plane). Across large swaths of occipital, parietal, and temporal cortex, arrays of intracortical arterioles and venules were observed in gyral crowns and deep within sulcal folds. Systematic arteriole-venule patterns revealed potential architecture of input-output flow relationships. Even single vessels could be followed across cortical laminae. As a first step toward imaging microvasculature in humans, this method introduces a new technology and animal model for understanding relationships between functional and vascular architectures.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"2621-2635.e5"},"PeriodicalIF":15.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.05.028","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Intracortical arterioles are key locations for blood flow regulation and oxygen supply in the brain and are critical to brain health and disease. However, imaging such small (<100-μm-sized) vessels in humans is challenging. Here, using non-human primates as a model, we developed a capability for imaging microvasculature in vivo with a clinical 7 T MRI scanner. Using simulations, we identified parameters for imaging intracortical vessels with slow flow and combined this with high-resolution imaging (64 × 64 μm2 in-plane). Across large swaths of occipital, parietal, and temporal cortex, arrays of intracortical arterioles and venules were observed in gyral crowns and deep within sulcal folds. Systematic arteriole-venule patterns revealed potential architecture of input-output flow relationships. Even single vessels could be followed across cortical laminae. As a first step toward imaging microvasculature in humans, this method introduces a new technology and animal model for understanding relationships between functional and vascular architectures.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.