A 20-feature radiomic signature of triple-negative breast cancer identifies patients at high risk of death.

IF 7.6 2区 医学 Q1 ONCOLOGY
Humaira Noor, Yuanning Zheng, Adam B Mantz, Ryle Zhou, Andrew Kozlov, Wendy B DeMartini, Shu-Tian Chen, Satoko Okamoto, Debra M Ikeda, Melinda L Telli, Allison W Kurian, James M Ford, Shaveta Vinayak, Mina Satoyoshi, Vishal Joshi, Sarah A Mattonen, Kevin Lee, Olivier Gevaert, George W Sledge, Haruka Itakura
{"title":"A 20-feature radiomic signature of triple-negative breast cancer identifies patients at high risk of death.","authors":"Humaira Noor, Yuanning Zheng, Adam B Mantz, Ryle Zhou, Andrew Kozlov, Wendy B DeMartini, Shu-Tian Chen, Satoko Okamoto, Debra M Ikeda, Melinda L Telli, Allison W Kurian, James M Ford, Shaveta Vinayak, Mina Satoyoshi, Vishal Joshi, Sarah A Mattonen, Kevin Lee, Olivier Gevaert, George W Sledge, Haruka Itakura","doi":"10.1038/s41523-025-00790-3","DOIUrl":null,"url":null,"abstract":"<p><p>A substantial proportion of patients with non-metastatic triple-negative breast cancer (TNBC) experience disease progression and death despite treatment. However, no tool currently exists to discriminate those at higher risk of death. To identify high-risk TNBC, we conducted a retrospective analysis of 749 patients from two independent cohorts. We built a prediction model that leverages breast magnetic resonance imaging (MRI) features to predict risk groups based on a 50-gene Transcriptomics Signature (TS). The TS distinguished patients with high-risk for death in multivariate survival analysis (Transcriptomic cohort: [HR] = 13.6, 95% confidence interval [CI] = 1.56-1, p = 0.02; SCAN-B cohort: HR = 1.45, CI 1.04-2.03, p = 0.02). The model identified a 20-feature radiomic signature derived from breast MRI that predicted the TS-based risk groups. This imaging-based classifier was applied to a validation cohort (log rank p = 0.013, accuracy 0.72, AUC 0.71, F1 0.74, precision 0.67, and recall 0.82), detecting a 25% absolute survival difference between high- and low-risk groups after 5 years.</p>","PeriodicalId":19247,"journal":{"name":"NPJ Breast Cancer","volume":"11 1","pages":"79"},"PeriodicalIF":7.6000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297616/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Breast Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41523-025-00790-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A substantial proportion of patients with non-metastatic triple-negative breast cancer (TNBC) experience disease progression and death despite treatment. However, no tool currently exists to discriminate those at higher risk of death. To identify high-risk TNBC, we conducted a retrospective analysis of 749 patients from two independent cohorts. We built a prediction model that leverages breast magnetic resonance imaging (MRI) features to predict risk groups based on a 50-gene Transcriptomics Signature (TS). The TS distinguished patients with high-risk for death in multivariate survival analysis (Transcriptomic cohort: [HR] = 13.6, 95% confidence interval [CI] = 1.56-1, p = 0.02; SCAN-B cohort: HR = 1.45, CI 1.04-2.03, p = 0.02). The model identified a 20-feature radiomic signature derived from breast MRI that predicted the TS-based risk groups. This imaging-based classifier was applied to a validation cohort (log rank p = 0.013, accuracy 0.72, AUC 0.71, F1 0.74, precision 0.67, and recall 0.82), detecting a 25% absolute survival difference between high- and low-risk groups after 5 years.

Abstract Image

Abstract Image

Abstract Image

三阴性乳腺癌的20个特征放射特征确定了死亡风险高的患者。
非转移性三阴性乳腺癌(TNBC)患者的很大一部分经历疾病进展和死亡,尽管治疗。然而,目前没有任何工具可以区分那些死亡风险较高的人。为了确定高危TNBC,我们对来自两个独立队列的749例患者进行了回顾性分析。我们建立了一个预测模型,该模型利用乳房磁共振成像(MRI)特征来预测基于50个基因转录组学特征(TS)的风险群体。多变量生存分析中,TS可区分死亡高危患者(转录组组队列:[HR] = 13.6, 95%可信区间[CI] = 1.56-1, p = 0.02;SCAN-B队列:HR = 1.45,置信区间1.04 - -2.03,p = 0.02)。该模型确定了来自乳房MRI的20个特征放射特征,预测了基于ts的风险群体。该基于图像的分类器应用于验证队列(log rank p = 0.013,准确率0.72,AUC 0.71, F1 0.74,精度0.67,召回率0.82),检测出5年后高风险组和低风险组之间的绝对生存差异为25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NPJ Breast Cancer
NPJ Breast Cancer Medicine-Pharmacology (medical)
CiteScore
10.10
自引率
1.70%
发文量
122
审稿时长
9 weeks
期刊介绍: npj Breast Cancer publishes original research articles, reviews, brief correspondence, meeting reports, editorial summaries and hypothesis generating observations which could be unexplained or preliminary findings from experiments, novel ideas, or the framing of new questions that need to be solved. Featured topics of the journal include imaging, immunotherapy, molecular classification of disease, mechanism-based therapies largely targeting signal transduction pathways, carcinogenesis including hereditary susceptibility and molecular epidemiology, survivorship issues including long-term toxicities of treatment and secondary neoplasm occurrence, the biophysics of cancer, mechanisms of metastasis and their perturbation, and studies of the tumor microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信