{"title":"Artificial diamond as a next generation material for gas sensors.","authors":"Nipun Sharma, Alexey Kucherik, Dmitriy Buharov, Vlad Samyshkin, Anton Osipov, Bordanov Ilya, Sergey Shchanikov, Mahesh Kumar","doi":"10.1088/1361-6528/adf449","DOIUrl":null,"url":null,"abstract":"<p><p>Diamond based gas sensors have drawn a lot of interest because of their remarkable resilience, stability, and sensitivity in harsh conditions. Artificial diamonds have emerged as a cornerstone material in advanced technology due to their exceptional physical, chemical, and optical properties. The broad bandgap, chemical inertness, and superior thermal conductivity of diamonds are utilized by these sensors to provide excellent resistance to extreme temperatures and severe environments. The sensitivity of the sensor to various gases is enhanced by hydrogen-terminated diamond surfaces, which enable p-type surface conductivity through charge transfer interactions. Advances in chemical vapor deposition (CVD) techniques have increased the availability of high-quality diamond films for microfabricated sensor systems. Applications of diamond in environmental monitoring and industrial safety, with a focus on detecting dangerous gases including CO, NOx, and volatile organic compounds (VOC), have been the main focus of the review. This study provides a comprehensive recent report of diamond-based gas sensors, emphasizing advancements as well as possible directions for the future. This review is really helpful for researchers looking to employ artificial diamonds in extreme conditions for the detection of gases to develop solutions in a quickly changing technological context.
.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adf449","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Diamond based gas sensors have drawn a lot of interest because of their remarkable resilience, stability, and sensitivity in harsh conditions. Artificial diamonds have emerged as a cornerstone material in advanced technology due to their exceptional physical, chemical, and optical properties. The broad bandgap, chemical inertness, and superior thermal conductivity of diamonds are utilized by these sensors to provide excellent resistance to extreme temperatures and severe environments. The sensitivity of the sensor to various gases is enhanced by hydrogen-terminated diamond surfaces, which enable p-type surface conductivity through charge transfer interactions. Advances in chemical vapor deposition (CVD) techniques have increased the availability of high-quality diamond films for microfabricated sensor systems. Applications of diamond in environmental monitoring and industrial safety, with a focus on detecting dangerous gases including CO, NOx, and volatile organic compounds (VOC), have been the main focus of the review. This study provides a comprehensive recent report of diamond-based gas sensors, emphasizing advancements as well as possible directions for the future. This review is really helpful for researchers looking to employ artificial diamonds in extreme conditions for the detection of gases to develop solutions in a quickly changing technological context.
.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.