{"title":"In Vivo Study of Bone Growth Around Additively Manufactured Implants With Ti-6Al-4V and Bioactive Glass Powder Composites","authors":"Chih-Yu Lee, Pei-Ching Kung, Chih-Chieh Huang, Shao-Ju Shih, E-Wen Huang, San-Yuan Chen, Meng-Huang Wu, Nien-Ti Tsou","doi":"10.1002/jor.70037","DOIUrl":null,"url":null,"abstract":"<p>Effective osseointegration is a fundamental requirement in biomedical implant applications. Additive manufacturing allows precise control over implant geometry and material composition, enhancing implant design flexibility. Bioactive glass (BG) can substantially enhance bone binding and bioactivity; however, limited research has been conducted on its incorporation into additively manufactured implants. The performance of BG varies depending on the incorporation method, and the spatial and temporal evolution of its integration remains unclear. In this study, we synthesized Ti-6Al-4V/58S BG composites by using the selective laser melting method and systematically compared the effects of BG coating and doping in additively manufactured implants. In vivo histological results from animal tests were statistically analyzed and discussed in terms of osseointegration over 4- and 12-week periods. Bone-to-implant contact (BIC) and bone density (BD) were used as quantitative metrics to evaluate interactions between the implants and surrounding bone. Our findings indicate that both BG-doped and BG-coated implants accelerated bone ingrowth during the early stages of healing. BG-coated implants demonstrated a greater improvement than did pure 3D-printed Ti-6Al-4V implants. However, the effects of BG became nonsignificant during the later healing stage (12 weeks). This study provides a foundation for systematically investigating BG incorporation methods in 3D-printed biomedical implants and their effect on osseointegration.</p>","PeriodicalId":16650,"journal":{"name":"Journal of Orthopaedic Research®","volume":"43 10","pages":"1796-1804"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jor.70037","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Research®","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jor.70037","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Effective osseointegration is a fundamental requirement in biomedical implant applications. Additive manufacturing allows precise control over implant geometry and material composition, enhancing implant design flexibility. Bioactive glass (BG) can substantially enhance bone binding and bioactivity; however, limited research has been conducted on its incorporation into additively manufactured implants. The performance of BG varies depending on the incorporation method, and the spatial and temporal evolution of its integration remains unclear. In this study, we synthesized Ti-6Al-4V/58S BG composites by using the selective laser melting method and systematically compared the effects of BG coating and doping in additively manufactured implants. In vivo histological results from animal tests were statistically analyzed and discussed in terms of osseointegration over 4- and 12-week periods. Bone-to-implant contact (BIC) and bone density (BD) were used as quantitative metrics to evaluate interactions between the implants and surrounding bone. Our findings indicate that both BG-doped and BG-coated implants accelerated bone ingrowth during the early stages of healing. BG-coated implants demonstrated a greater improvement than did pure 3D-printed Ti-6Al-4V implants. However, the effects of BG became nonsignificant during the later healing stage (12 weeks). This study provides a foundation for systematically investigating BG incorporation methods in 3D-printed biomedical implants and their effect on osseointegration.
期刊介绍:
The Journal of Orthopaedic Research is the forum for the rapid publication of high quality reports of new information on the full spectrum of orthopaedic research, including life sciences, engineering, translational, and clinical studies.