Juan Miguel Lopez Alcaraz, Wilhelm Haverkamp, Nils Strodthoff
{"title":"Explainable machine learning for neoplasms diagnosis via electrocardiograms: an externally validated study.","authors":"Juan Miguel Lopez Alcaraz, Wilhelm Haverkamp, Nils Strodthoff","doi":"10.1186/s40959-025-00370-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neoplasms are a major cause of mortality globally, where early diagnosis is essential for improving outcomes. Current diagnostic methods are often invasive, expensive, and inaccessible in resource-limited settings. This study explores the potential of electrocardiogram (ECG) data, a widely available and non-invasive tool for diagnosing neoplasms through cardiovascular changes linked to neoplastic presence.</p><p><strong>Methods: </strong>A diagnostic pipeline combining tree-based machine learning models with Shapley value analysis for explainability was developed. The model was trained and internally validated on a large dataset and externally validated on an independent cohort to ensure robustness and generalizability. Key ECG features contributing to predictions were identified and analyzed.</p><p><strong>Results: </strong>The model achieved high diagnostic accuracy in both internal testing and external validation cohorts. Shapley value analysis highlighted significant ECG features, including novel predictors. The approach is cost-effective, scalable, and suitable for resource-limited settings, offering insights into cardiovascular changes associated with neoplasms and their therapies.</p><p><strong>Conclusions: </strong>This study demonstrates the feasibility of using ECG signals and machine learning for non-invasive neoplasm diagnosis. By providing interpretable insights into cardio-neoplasm interactions, this method addresses gaps in diagnostics and supports integration into broader diagnostic and therapeutic frameworks.</p>","PeriodicalId":9804,"journal":{"name":"Cardio-oncology","volume":"11 1","pages":"70"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297791/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardio-oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40959-025-00370-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Neoplasms are a major cause of mortality globally, where early diagnosis is essential for improving outcomes. Current diagnostic methods are often invasive, expensive, and inaccessible in resource-limited settings. This study explores the potential of electrocardiogram (ECG) data, a widely available and non-invasive tool for diagnosing neoplasms through cardiovascular changes linked to neoplastic presence.
Methods: A diagnostic pipeline combining tree-based machine learning models with Shapley value analysis for explainability was developed. The model was trained and internally validated on a large dataset and externally validated on an independent cohort to ensure robustness and generalizability. Key ECG features contributing to predictions were identified and analyzed.
Results: The model achieved high diagnostic accuracy in both internal testing and external validation cohorts. Shapley value analysis highlighted significant ECG features, including novel predictors. The approach is cost-effective, scalable, and suitable for resource-limited settings, offering insights into cardiovascular changes associated with neoplasms and their therapies.
Conclusions: This study demonstrates the feasibility of using ECG signals and machine learning for non-invasive neoplasm diagnosis. By providing interpretable insights into cardio-neoplasm interactions, this method addresses gaps in diagnostics and supports integration into broader diagnostic and therapeutic frameworks.