In silico study of cytochrome-C binding to a cardiolipin-containing membrane.

IF 2.4 4区 生物学 Q3 BIOPHYSICS
Alessia Muroni, Fulvio Erba, Leonardo Domenichelli, Luisa Di Paola, Federica Sinibaldi, Giampiero Mei, Almerinda Di Venere, Velia Minicozzi
{"title":"In silico study of cytochrome-C binding to a cardiolipin-containing membrane.","authors":"Alessia Muroni, Fulvio Erba, Leonardo Domenichelli, Luisa Di Paola, Federica Sinibaldi, Giampiero Mei, Almerinda Di Venere, Velia Minicozzi","doi":"10.1007/s00249-025-01783-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cytochrome C is a key protein involved in electron transport within the mitochondrial respiratory chain and in apoptosis mechanisms. In this work, we provide a detailed theoretical analysis of the binding mechanism between cytochrome-C and a cardiolipin-containing membrane. Molecular dynamics simulations, along with protein contact network and fractal dimension analyses were employed to investigate the structural changes in cytochrome-C during the binding process. Our results suggest that cytochrome-C follows a two-step binding mechanism, starting with a rapid initial interaction, followed by slower conformational rearrangements. We identified two different cytochrome-C conformations at the membrane: a compact, native-like structure and an extended form. The latter, stabilized by Lys72, exhibits a higher binding affinity (≈ 2 kcal/mol) compared to the former. Protein extension also correlates with increased protein-membrane contact and altered heme ring orientation, suggesting that the partial unfolding of cytochrome-C could be crucial for its peroxidase activity and its role in apoptosis. These findings enhance the understanding of the cytochrome-C's membrane interactions and its diverse functions.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1007/s00249-025-01783-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cytochrome C is a key protein involved in electron transport within the mitochondrial respiratory chain and in apoptosis mechanisms. In this work, we provide a detailed theoretical analysis of the binding mechanism between cytochrome-C and a cardiolipin-containing membrane. Molecular dynamics simulations, along with protein contact network and fractal dimension analyses were employed to investigate the structural changes in cytochrome-C during the binding process. Our results suggest that cytochrome-C follows a two-step binding mechanism, starting with a rapid initial interaction, followed by slower conformational rearrangements. We identified two different cytochrome-C conformations at the membrane: a compact, native-like structure and an extended form. The latter, stabilized by Lys72, exhibits a higher binding affinity (≈ 2 kcal/mol) compared to the former. Protein extension also correlates with increased protein-membrane contact and altered heme ring orientation, suggesting that the partial unfolding of cytochrome-C could be crucial for its peroxidase activity and its role in apoptosis. These findings enhance the understanding of the cytochrome-C's membrane interactions and its diverse functions.

细胞色素c与含心磷脂膜结合的硅片研究。
细胞色素C是参与线粒体呼吸链内电子传递和细胞凋亡机制的关键蛋白。在这项工作中,我们对细胞色素c与含心磷脂膜之间的结合机制进行了详细的理论分析。通过分子动力学模拟、蛋白质接触网络和分形维数分析,研究了细胞色素c在结合过程中的结构变化。我们的研究结果表明,细胞色素c遵循两步结合机制,从快速的初始相互作用开始,然后是较慢的构象重排。我们在细胞膜上发现了两种不同的细胞色素c构象:一种紧凑的,天然的结构和一种扩展的形式。与前者相比,后者在Lys72的稳定作用下表现出更高的结合亲和力(≈2 kcal/mol)。蛋白质延伸还与蛋白质-膜接触增加和血红素环取向改变有关,这表明细胞色素c的部分展开可能对其过氧化物酶活性及其在细胞凋亡中的作用至关重要。这些发现增强了对细胞色素c的膜相互作用及其多种功能的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信