Shu-Guang Bi, Haitao Yu, Tian-Long Gao, Jia-Jun Wu, Yu-Ming Mao, Juan Gong, Fang-Zhou Wang, Liu Yang, Jia Chen, Zi-Chong Lan, Meng-Ting Shen, Yun-Juan Nie, Gao-Shang Chai
{"title":"Aerobic Exercise Attenuates Autophagy-Lysosomal Flux Deficits via β2-AR-Mediated ESCRT-III Subunit CHMP4B in Mice With Human MAPT P301L.","authors":"Shu-Guang Bi, Haitao Yu, Tian-Long Gao, Jia-Jun Wu, Yu-Ming Mao, Juan Gong, Fang-Zhou Wang, Liu Yang, Jia Chen, Zi-Chong Lan, Meng-Ting Shen, Yun-Juan Nie, Gao-Shang Chai","doi":"10.1111/acel.70184","DOIUrl":null,"url":null,"abstract":"<p><p>Deficits in the autophagy-lysosomal pathway facilitate intracellular microtubule associated protein tau (MAPT) accumulation in Alzheimer disease (AD). Aerobic exercise (AE) has been recommended as a way to delay and treat AD, but the exact effects and mechanisms have not been fully elucidated. Here, we found that AE (8-week treadmill running, 40 min/day, 5 days/week) alleviated autophagy-lysosomal defects and MAPT pathology through the activation of β2-adrenergic receptors (β2-AR) in MAPT P301L mice. Molecular mechanistic investigations revealed that endosomal sorting complex required for transport (ESCRT) III subunit charged multivesicular body protein 4B (CHMP4B), which is essential for autophagosome-lysosome fusion, was significantly decreased in the cerebral cortex of AD patients and the hippocampus of MAPT P301L mice. AE restored the levels of CHMP4B, which reversed autophagy-lysosomal defects and reduced MAPT aggregation. Inhibition of β2-AR by propranolol (30 mg/kg, intragastric administration 1 h before each AE session) restrained AE-attenuated MAPT accumulation by inhibiting autophagy-lysosomal flux in MAPT P301L mice. Our findings suggest that AE can alleviate autophagosome-lysosome fusion deficits by promoting the β2-AR-RXRα-CHMP4B-ESCRT-III pathway, reducing pathological MAPT aggregation, which also reveals a novel theoretical basis for AE attenuating AD progression.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70184"},"PeriodicalIF":7.1000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70184","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Deficits in the autophagy-lysosomal pathway facilitate intracellular microtubule associated protein tau (MAPT) accumulation in Alzheimer disease (AD). Aerobic exercise (AE) has been recommended as a way to delay and treat AD, but the exact effects and mechanisms have not been fully elucidated. Here, we found that AE (8-week treadmill running, 40 min/day, 5 days/week) alleviated autophagy-lysosomal defects and MAPT pathology through the activation of β2-adrenergic receptors (β2-AR) in MAPT P301L mice. Molecular mechanistic investigations revealed that endosomal sorting complex required for transport (ESCRT) III subunit charged multivesicular body protein 4B (CHMP4B), which is essential for autophagosome-lysosome fusion, was significantly decreased in the cerebral cortex of AD patients and the hippocampus of MAPT P301L mice. AE restored the levels of CHMP4B, which reversed autophagy-lysosomal defects and reduced MAPT aggregation. Inhibition of β2-AR by propranolol (30 mg/kg, intragastric administration 1 h before each AE session) restrained AE-attenuated MAPT accumulation by inhibiting autophagy-lysosomal flux in MAPT P301L mice. Our findings suggest that AE can alleviate autophagosome-lysosome fusion deficits by promoting the β2-AR-RXRα-CHMP4B-ESCRT-III pathway, reducing pathological MAPT aggregation, which also reveals a novel theoretical basis for AE attenuating AD progression.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.