Enhanced Superconductivity in X4H15 Compounds via Hole-Doping at Ambient Pressure.

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kun Gao, Wenwen Cui, Tiago F T Cerqueira, Hai-Chen Wang, Silvana Botti, Miguel A L Marques
{"title":"Enhanced Superconductivity in X<sub>4</sub>H<sub>15</sub> Compounds via Hole-Doping at Ambient Pressure.","authors":"Kun Gao, Wenwen Cui, Tiago F T Cerqueira, Hai-Chen Wang, Silvana Botti, Miguel A L Marques","doi":"10.1002/advs.202508419","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a computational investigation of X<sub>4</sub>H<sub>15</sub> compounds (where X represents a metal) as potential superconductors at ambient conditions or under pressure. Through systematic density functional theory calculations and electron-phonon coupling analysis, it is demonstrated that electronic structure engineering via hole doping dramatically enhances the superconducting properties of these materials. While electron-doped compounds with X<sup>4 +</sup> cations (Ti, Zr, Hf, Th) exhibit modest transition temperatures of 1-9 K, hole-doped systems with X<sup>3 +</sup> cations (Y, Tb, Dy, Ho, Er, Tm, Lu) show remarkably higher values of ≈50 K at ambient pressure. Superconductivity in hole-doped compounds originates from stronger coupling between electrons and both cation and hydrogen phonon modes. Although pristine X<sup>3 +</sup> <sub>4</sub>H<sub>15</sub> compounds are thermodynamically unstable, a viable synthesis route via controlled hole doping of the charge-compensated YZr<sub>3</sub>H<sub>15</sub> compound is proposed. The calculations predict that even minimal concentrations of excess Y can induce high-temperature superconductivity while preserving structural integrity. This work reveals how strategic electronic structure modulation can optimize superconducting properties in hydride systems, establishing a promising pathway toward practical high-temperature conventional superconductors at ambient pressure.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e08419"},"PeriodicalIF":14.1000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202508419","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a computational investigation of X4H15 compounds (where X represents a metal) as potential superconductors at ambient conditions or under pressure. Through systematic density functional theory calculations and electron-phonon coupling analysis, it is demonstrated that electronic structure engineering via hole doping dramatically enhances the superconducting properties of these materials. While electron-doped compounds with X4 + cations (Ti, Zr, Hf, Th) exhibit modest transition temperatures of 1-9 K, hole-doped systems with X3 + cations (Y, Tb, Dy, Ho, Er, Tm, Lu) show remarkably higher values of ≈50 K at ambient pressure. Superconductivity in hole-doped compounds originates from stronger coupling between electrons and both cation and hydrogen phonon modes. Although pristine X3 + 4H15 compounds are thermodynamically unstable, a viable synthesis route via controlled hole doping of the charge-compensated YZr3H15 compound is proposed. The calculations predict that even minimal concentrations of excess Y can induce high-temperature superconductivity while preserving structural integrity. This work reveals how strategic electronic structure modulation can optimize superconducting properties in hydride systems, establishing a promising pathway toward practical high-temperature conventional superconductors at ambient pressure.

室温下通过空穴掺杂增强X4H15化合物的超导性。
本研究提出了X4H15化合物(其中X代表金属)在环境条件或压力下作为潜在超导体的计算研究。通过系统的密度泛函理论计算和电子-声子耦合分析,证明了通过空穴掺杂进行电子结构工程可以显著提高这些材料的超导性能。电子掺杂X4 +阳离子(Ti, Zr, Hf, Th)的化合物表现出1- 9k的适度转变温度,而具有X3 +阳离子(Y, Tb, Dy, Ho, Er, Tm, Lu)的空穴掺杂体系在环境压力下表现出明显更高的≈50k值。空穴掺杂化合物中的超导性源于电子与阳离子和氢声子模式之间更强的耦合。虽然原始的X3 + 4H15化合物热力学不稳定,但我们提出了一种可行的合成路线,即通过控制空穴掺杂电荷补偿的YZr3H15化合物。计算预测,即使是最小浓度的过量Y也能在保持结构完整性的同时诱导高温超导。这项工作揭示了战略性电子结构调制如何优化氢化物系统的超导性能,为在环境压力下实现实用的高温常规超导体建立了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信