Edward Arnold Johnson, Michille. Amy Ives, Estefania Roldan Nicolau
{"title":"Do Small Forest Gaps Collect Snow That Prevents Tree Gap Dynamics in Western North American High Latitude Conifer Forests?","authors":"Edward Arnold Johnson, Michille. Amy Ives, Estefania Roldan Nicolau","doi":"10.1111/jvs.70056","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Question</h3>\n \n <p>What are the reasons that tree gap dynamics are little found in conifer boreal and subalpine forests in upland small forest gaps (1 to 1.5 gap diameter/tree heights (D/H))? Location: High latitude conifer forests in western Canada.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We use a sample of 480 from 2103 small gaps created 40 years ago for forest water management to increase snow and delay melt to assess if tree gap regeneration occurs. We then used two published studies: a ray-trace model of solar irradiance into gaps (Musselman et al. 2015) and a Gap Radiation Model (GaRM) (Seyednasrollah and Kumar 2014) to explain the net short and long wave radiation and snow accumulation and melting in small forest gaps, in large forest clearings, and in closed canopy forests.</p>\n </section>\n \n <section>\n \n <h3> Results/Discussion</h3>\n \n <p>We find that tree regeneration is rare in high latitude conifer forests because small gaps (1–1.5 diameter gap/tree height) accumulate deep snow that persists into spring and prevents regeneration of trees. Besides the shorter growing season, the cause may be several species of parasitic snow fungi since seed sources are nearby, adjacent conifer trees do not reach into gaps, and the forest floor is not the best for tree regeneration. Finally, the short return time of large lightning-caused crown fires sets the existence time of these small gaps.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Low net short wave radiation in gaps at latitudes greater than ~40° North leads to deep accumulation and slow melt in the spring of snow in these small gaps compared to closed canopy conifer forests or larger clearings. The result is little or no tree regeneration and thus little or no tree gap dynamics.</p>\n </section>\n </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"36 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.70056","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vegetation Science","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jvs.70056","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Question
What are the reasons that tree gap dynamics are little found in conifer boreal and subalpine forests in upland small forest gaps (1 to 1.5 gap diameter/tree heights (D/H))? Location: High latitude conifer forests in western Canada.
Methods
We use a sample of 480 from 2103 small gaps created 40 years ago for forest water management to increase snow and delay melt to assess if tree gap regeneration occurs. We then used two published studies: a ray-trace model of solar irradiance into gaps (Musselman et al. 2015) and a Gap Radiation Model (GaRM) (Seyednasrollah and Kumar 2014) to explain the net short and long wave radiation and snow accumulation and melting in small forest gaps, in large forest clearings, and in closed canopy forests.
Results/Discussion
We find that tree regeneration is rare in high latitude conifer forests because small gaps (1–1.5 diameter gap/tree height) accumulate deep snow that persists into spring and prevents regeneration of trees. Besides the shorter growing season, the cause may be several species of parasitic snow fungi since seed sources are nearby, adjacent conifer trees do not reach into gaps, and the forest floor is not the best for tree regeneration. Finally, the short return time of large lightning-caused crown fires sets the existence time of these small gaps.
Conclusion
Low net short wave radiation in gaps at latitudes greater than ~40° North leads to deep accumulation and slow melt in the spring of snow in these small gaps compared to closed canopy conifer forests or larger clearings. The result is little or no tree regeneration and thus little or no tree gap dynamics.
期刊介绍:
The Journal of Vegetation Science publishes papers on all aspects of plant community ecology, with particular emphasis on papers that develop new concepts or methods, test theory, identify general patterns, or that are otherwise likely to interest a broad international readership. Papers may focus on any aspect of vegetation science, e.g. community structure (including community assembly and plant functional types), biodiversity (including species richness and composition), spatial patterns (including plant geography and landscape ecology), temporal changes (including demography, community dynamics and palaeoecology) and processes (including ecophysiology), provided the focus is on increasing our understanding of plant communities. The Journal publishes papers on the ecology of a single species only if it plays a key role in structuring plant communities. Papers that apply ecological concepts, theories and methods to the vegetation management, conservation and restoration, and papers on vegetation survey should be directed to our associate journal, Applied Vegetation Science journal.