Semi-overexpressed OsMYB86L2 specifically enhances cellulose biosynthesis to maximize bioethanol productivity by cascading lignocellulose depolymerization via integrated rapid-physical and recyclable-chemical processes†
{"title":"Semi-overexpressed OsMYB86L2 specifically enhances cellulose biosynthesis to maximize bioethanol productivity by cascading lignocellulose depolymerization via integrated rapid-physical and recyclable-chemical processes†","authors":"Hailang Wang, Sufang Li, Leiming Wu, Weihua Zou, Mingliang Zhang, Youmei Wang, Zhengyi Lv, Peng Chen, Peng Liu, Yujing Yang, Liangcai Peng and Yanting Wang","doi":"10.1039/D5GC00658A","DOIUrl":null,"url":null,"abstract":"<p >Genetic engineering of plant cell walls has been implemented in bioenergy crops, but the tradeoff between biomass production and lignocellulose recalcitrance remains to be resolved. Although <em>OsMYB86L2</em> overexpression caused a defective phenotype in a homozygous <em>Ho86</em> mutant, this study found that its semi-overproduction could up-regulate cellulose biosynthesis and down-regulate non-cellulosic polymer assembly into cell walls in a heterozygous <em>He86</em> mutant, which not only generated a desirable substrate that consists of a high level of cellulose and low-recalcitrance lignocellulose but also resulted in the accumulation of a much higher level of fermentable sugars (a 1.6-fold increase) with a similar grain yield to the wild type. After incubation with a recyclable alkali (CO) or organic acid (oxalic acid) and a brief (1–2 min) microwave irradiation pretreatment, the <em>He86</em> mutant showed near-complete biomass saccharification from ultrasound-assistant enzymatic hydrolysis, leading to either a high yield of cellulosic ethanol (15–17% dry matter) or maximum total ethanol (25–26% dry matter) <em>via</em> engineered yeast fermentation. As these two optimal integrated pretreatments could largely co-extract the wall polymers to reduce cellulose polymerization and increase lignocellulose accessibility and porosity, accompanied by a distinct reduction in chemical inhibitor release, this study finally proposed a novel mechanism to elucidate how the modified lignocellulose can be completely digested and efficiently converted <em>via</em> integrated biomass processes, providing insights into precise lignocellulose modification and effective biomass engineering.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 30","pages":" 9127-9143"},"PeriodicalIF":9.2000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc00658a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic engineering of plant cell walls has been implemented in bioenergy crops, but the tradeoff between biomass production and lignocellulose recalcitrance remains to be resolved. Although OsMYB86L2 overexpression caused a defective phenotype in a homozygous Ho86 mutant, this study found that its semi-overproduction could up-regulate cellulose biosynthesis and down-regulate non-cellulosic polymer assembly into cell walls in a heterozygous He86 mutant, which not only generated a desirable substrate that consists of a high level of cellulose and low-recalcitrance lignocellulose but also resulted in the accumulation of a much higher level of fermentable sugars (a 1.6-fold increase) with a similar grain yield to the wild type. After incubation with a recyclable alkali (CO) or organic acid (oxalic acid) and a brief (1–2 min) microwave irradiation pretreatment, the He86 mutant showed near-complete biomass saccharification from ultrasound-assistant enzymatic hydrolysis, leading to either a high yield of cellulosic ethanol (15–17% dry matter) or maximum total ethanol (25–26% dry matter) via engineered yeast fermentation. As these two optimal integrated pretreatments could largely co-extract the wall polymers to reduce cellulose polymerization and increase lignocellulose accessibility and porosity, accompanied by a distinct reduction in chemical inhibitor release, this study finally proposed a novel mechanism to elucidate how the modified lignocellulose can be completely digested and efficiently converted via integrated biomass processes, providing insights into precise lignocellulose modification and effective biomass engineering.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.